
Abstract

A new high-resolution and genuinely multidimensional numerical method for solving con-
servation laws is being developed. It was designed to avoid the limitations of the traditional
methods, and was built from ground zero with extensive physics considerations. Neverthe-
less, its foundation is mathematically simple enough that one can build from it a coherent,
robust, e�cient and accurate numerical framework.

Two basic beliefs that set the new method apart from the established methods are at the
core of its development. The �rst belief is that, in order to capture physics more e�ciently
and realistically, the modeling focus should be placed on the original integral form of the
physical conservation laws, rather than the di�erential form. The latter form follows from
the integral form under the additional assumption that the physical solution is smooth, an
assumption that is di�cult to realize numerically in a region of rapid change, such as a
boundary layer or a shock. The second belief is that, with proper modeling of the integral
and di�erential forms themselves, the resulting numerical solution should automatically be
consistent with the properties derived from the integral and di�erential forms, e.g., the jump
conditions across a shock and the properties of characteristics. Therefore a much simpler and
more robust method can be developed by not using the above derived properties explicitly.

Speci�cally, to capture physics as fully as possible, the method requires that: (i) space and
time be uni�ed and treated as a single entity; (ii) both local and global ux conservation in
space and time be enforced; and (iii) a multidimensional scheme be constructed without using
the dimensional-splitting approach, such that multidimensional e�ects and source terms
(which are scalars) can be modeled more realistically.

To simplify mathematics and broaden its applicability as much as possible, the method
attempts to use the simplest logical structures and approximation techniques. Speci�cally,
(i) it uses a staggered space-time mesh such that ux at any interface separating two con-
servation elements can be evaluated internally in a simpler and more consistent manner,
without using a separate ux model; (ii) it does not use many well-established techniques
such as Riemann solvers, ux splittings and monotonicity constraints such that the limita-
tions and complications associated with them can be avoided; and (iii) it does not use special
techniques that are not applicable to more general problems.

Furthermore, triangles in 2D space and tetrahedrons in 3D space are used as the basic
building blocks of the spatial meshes, such that the method (i) can be used to construct 2D
and 3D non-dissipative schemes in a natural manner; and (ii) is compatible with the simplest
unstructured meshes.

Note that while numerical dissipation is required for shock capturing, it may also result
in annihilation of small disturbances such as sound waves and, in the case of ow with a
large Reynolds number, may overwhelm physical dissipation. To overcome this di�culty,
two di�erent and mutually complementary types of adjustable numerical dissipation are
introduced in the present development.
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1. Introduction

Since its inception in 1991 [1], the space-time conservation element and solution element
method [1{32] has been used to obtain highly accurate numerical solutions for ow prob-
lems involving shocks, rarefaction waves, acoustic waves, vortices, ZND detonation waves,
shock/acoustic waves/vortices interactions, dam-break and hydraulic jump. This article is
the �rst of a series of papers that will provide a systematic and up-to-date description of this
new method (hereafter it may be referred to abbreviatedly as the space-time CE/SE method
or simply as the CE/SE method). To answer frequently-asked questions and clarify possible
misconceptions, we shall begin this paper with (i) an overall view of the CE/SE method and
its capabilities, and (ii) an extensive comparison of the basic concepts used by the CE/SE
method with those used by other methods.

Currently, the �eld of computational uid dynamics (CFD) represents a diverse collection
of numerical methods, with each of them having its own limitations. Generally speaking,
these methods were originally introduced to solve special classes of ow problems. Develop-
ment of the CE/SE method is motivated by a desire to build a brand new, more general and
coherent numerical framework that avoids the limitations of the traditional methods.

The new method is built on a set of design principles given in [2]. They include: (i) To
enforce both local and global ux conservation in space and time, with ux evaluation at an
interface being an integral part of the solution procedure and requiring no interpolation or
extrapolation; (ii) To unify space and time and treat them as a single entity; (iii) To consider
mesh values of dependent variables and their derivatives as independent variables, to be
solved for simultaneously; (iv) To use only local discrete variables rather than global variables
like the expansion coe�cients used in spectral methods; (v) To de�ne conservation elements
and solution elements such that the simplest stencil will result; (vi) To require that, as
much as possible, a numerical analogue be constructed so as to share with the corresponding
physical equations the same space-time invariant properties, such that numerical dissipation
can be minimized [5,10,24]; (vii) To exclude the use of characteristics-based techniques (such
as Riemann solvers); and (viii) To avoid the use of ad hoc techniques as much as possible.

Moreover, the development of the CE/SE method is also guided by two basic beliefs that
set it apart from the established methods. The �rst belief is that, in order to capture physics
more e�ciently and realistically, the modeling focus should be placed on the original integral
form of the physical conservation laws, rather than the di�erential form. The latter form
follows from the integral form under the additional assumption that the physical solution is
smooth, an assumption that is di�cult to realize numerically in a region of rapid change, such
as a boundary layer or a shock. The second belief is that, with proper modeling of the integral
and di�erential forms themselves, the resulting numerical solution should automatically be
consistent with the properties derived from the integral and di�erential forms, e.g., the jump
conditions across a shock and the properties of characteristics. In other words, a much
simpler and more robust method can be developed by not using the above derived properties
explicitly.

With the exception of the Navier-Stokes solver, all the 1D schemes described in [2] have
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been extended to become their 2D counterparts [9{11,14]. A more complete account of
these new 2D schemes and their applications will be given in this and the following papers
[3,4]. It will be shown in Sec. 3 that the spatial meshes used in these schemes are built
from triangles|in such a manner that the resulting meshes are completely di�erent from
those used in the �nite element method. As a result, these schemes are (i) compatible with
the simplest unstructured meshes [31], and (ii) constructed without using the dimensional-
splitting approach, i.e., without applying a 1D scheme in each coordinate direction. The
dimensional-splitting approach is widely used in the construction of multidimensional upwind
schemes. Unfortunately, this approach is awed in several respects [33]. In particular,
because a source term is not aligned with a special direction, it is di�cult to imagine how
this dimensional-splitting approach, in a logically consistent manner, can be used to solve a
multidimensional problem involving source terms, such as those modeling chemical energy
release.

Moreover, as will be shown shortly, because the CE/SE 2D schemes share with their 1D
versions the same design principles, not only is the extension to 2D a straightforward matter,
each of the new 2D schemes also shares with its 1D version virtually identical fundamental
characteristics.

At this juncture, note that monotonicity conditions are not observed by general ow
�elds, e.g., those involving ZND detonation waves [21]. As a result, techniques involving
monotonicity constraints are not used in the present development.

To give the reader, in advance, a concrete example that demonstrate the validity of the
two basic beliefs referred to earlier, a self-contained Fortran program is listed in Appendix
A. It is a CE/SE solver [23] for an extended Sod's shock tube problem that is the original
Sod's problem [38] with the additional complication of imposing a non-reecting boundary
condition at each end of the computational domain. Note that the ow under consideration
contains discontinuities and, relative to the computational frame, is subsonic throughout.
It is well known that implementing a non-reecting boundary condition for a subsonic ow
is much more di�cult than doing the same for a supersonic ow. This di�culty is further
exacerbated by the fact that the traditional non-reecting boundary conditions, e.g., the
characteristic, the radiation (asymptotic), the bu�er-zone, and the absorbing boundary con-
ditions [39-44] are all based on an assumption that is not valid for the present case, i.e.,
that the ow is continuous. In spite of the fact that solving the present extended Sod's
problem is substantially more di�cult than the original Sod's problem, the main loop in
the program listed herein contains only 39 Fortran statements. Not only is it very small in
size, this program has a very simple logical structure. With the exception of a single \if"
statement used to identify the time levels at which the non-reecting boundary conditions
must be imposed, it contains no conditional Fortran statements or functions such as \if",
\amax", or \amin" that are often used in programs implementing high-resolution upwind
methods. The small size of the listed program reects the simplicity of the techniques em-
ployed by the CE/SE method to capture shock waves. It also results from the fact that the
non-reecting boundary conditions used in the present solver are the simple extrapolation
conditions Eqs. (2.66) and (2.67) given in Sec. 2. They are much simpler than the traditional
non-reecting boundary conditions. On the other hand, the absence of Fortran conditional
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Figure 1: The CE/SE solution of the extended Sod's problem using the boundary conditions
Eqs. (2.66) and (2.67) (�t = 0:004, �x = 0:01, CFL�0.88, � = 0:5, � = 1).
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Figure 1: (continued).

5



statements is a result of avoiding the use of ad hoc techniques. In spite of its small size
and simple logical structure, according to the numerical results generated by the listed pro-
gram (presented here as Figs. 1(a){(c), with the numerical results and the exact solutions
denoted by triangles and solid lines, respectively; see also [23]), the present solver is capable
of generating nearly perfect non-reecting solutions using the same time-step size from t = 0.
Note that, at t = 10, all the waves have exited the computational domain, i.e., the exact
solution is constant within it. The theoretical values of density, velocity, and pressure are
approximately 0:4262000, 0:9277462 and 0:3030000, respectively. The maximummagnitudes
of the errors in the numerically computed values of density, velocity, and pressure at t = 10
are approximately 0:0004, 0:0007, and 0:0004, respectively.

Note that Eqs. (2.66) and (2.67) represent only one of many sets of simple and robust non-
reecting boundary conditions developed especially for the CE/SE method [23]. Behind this
development is a radical new concept based entirely on an assumption about the space-time
ux distribution in the neighborhood of a spatial boundary. As a result, implementation of
these CE/SE non-reecting boundary conditions does not require the use of characteristics-
based techniques.

To further demonstrate the nontraditional nature of the CE/SE method, the numerical
results generated using the steady-state non-reecting boundary conditions that were in-
troduced and rigorously justi�ed in [23] will also be presented here. Consider an alternate
CE/SE solver that di�ers from the above CE/SE solver only in the fact that the steady-state
boundary conditions Eq. (2.68) given in Sec. 2 are now taking the place of Eqs. (2.66) and
(2.67). At t = 0:2, the waves generated in the interior of the computational domain have not
yet reached the boundaries. In this case, with the given initial conditions (i.e., two di�erent
uniform states separated by a discontinuity located at the dead center of the domain), each
of the above two solvers yield the same uniform solution in the vincinity of the right or left
boundary. As a result, at t = 0:2, the numerical results generated by the alternate solver are
identical to those shown in Fig. 1(a). The numerical results of the alternate solver at t = 0:4
are shown in Fig. 2(a). It is seen that, by this time, the shock wave has passed cleanly
through the right boundary. There is good agreement between the numerical solution and
the exact solution everywhere in the interior except for a slight disagreement in the vicinity
of the right boundary. Note that the right boundary values, which do not vary with time,
are discontinuous with respect to the neighboring interior values. The numerical results at
t = 0:6 are shown in Fig. 2(b). As seen from the density pro�le, by this time, the contact
discontinuity has also passed through the right boundary. Agreement between the numerical
solution and the exact solution continue to be good in the interior. However, both left and
right boundary values are now discontinuous with respect to the neighboring interior values.

Note that several recent applications [13,16,17,26,28] of the CE/SE method to 2D aeroa-
coustics problems reveal that: (i) the trivial nature of implementing CE/SE non-reecting
boundary conditions is manifested even for 2D problems; (ii) accuracy of the numerical re-
sults for nonlinear Euler problems is comparable to that of a 4-6th order compact di�erence
scheme, even though nominally the CE/SE solver used is only of 2nd-order accuracy; and
(iii) most importantly, the CE/SE method is capable of accurately modeling both small
disturbances and strong shocks, and thus provides a unique tool for solving ow problems
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Figure 2: The CE/SE solution of the extended Sod's problem using the boundary condition
Eq. (2.68) (�t = 0:004, �x = 0:01, CFL�0.88, � = 0:5, � = 1).
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where the interactions between sound waves and shocks are important, such as the noise
�eld around a supersonic over- and under-expanded jet. The fact listed in item (i) is more
fundamental in nature, and will be further discussed in a separate paper. The following
comments pertain to items (ii) and (iii):

(a) Assuming the same order of accuracy, generally speaking, the accuracy of a scheme that
enforces the space-time ux-conservation property is higher than that of a scheme that
does not. A compact scheme generally does not enforce the ux-conservation property
of the nonlinear Euler equations. On the contrary, not only is the present scheme
ux-conserving, its accuracy in nonlinear calculations is enhanced by its surprisingly
small dispersive errors [2,8,13,16,17]. Moreover, the nominal order of accuracy of an
Euler solver is determined assuming a linearized form of the Euler equations. Thus its
signi�cance with respect to a highly nonlinear solution of the Euler equations may be
questionable.

(b) while numerical dissipation is required for shock resolution, it may also result in anni-
hilation of small disturbances such as sound waves. Thus, a solver that can handle
both small disturbances and strong shocks must be able to overcome this di�culty. It
will be explained shortly that the CE/SE method is intrinsically endowed with this
capability. On the other hand, a high-resolution upwind scheme that focuses only on
shock resolution may introduce too much numerical dissipation [45].

Next we shall review briey the inviscid version of the a-� scheme described in [2]. In
addition to providing a historical perspective, the review will remove, once and for all, any
lingering doubt from the reader's mind that the CE/SE method indeed di�ers substantially
in both concept and methodology from the well-established methods. In particular, it will
give in advance answers to questions such as: (i) is there any di�erence between the space-
time elements used here and those used in the �nite element method? and (ii) what are the
key di�erences between the CE/SE method and other �nite volume methods?

To proceed, consider an initial-value problem involving the PDE

@u

@t
+ a

@u

@x
= 0 (1:1)

where the convection speed a is a constant. The exact solution to any such problem has
three fundamental properties: (i) it does not dissipate with time; (ii) its value at a spatial
point at a later time has a �nite domain of dependence (a point) at an earlier time; and
(iii) it is completely determined by the initial data at a given time. Ideally, a numerical
solution for Eq. (1.1) should also possess the same three properties. Because (i) a solution
of a dissipative numerical scheme will dissipate with time, (ii) the value of a solution of an
implicit scheme at any point (x; t) is dependent on all initial data, and all the boundary
data up to the time t, and (iii) the unique determination of a solution by a scheme involving
more than two time levels requires the speci�cation of the data at at least the �rst two time
levels, an ideal solver must be a two-level, explicit, and non-dissipative (i.e., neutrally stable)
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scheme. In 1991, the �rst solver known to the authors that satis�es the above conditions
was reported in [1]. Because this new solver models Eq. (1.1) which is characterized by the
parameter a, it is referred to as the a scheme. The a scheme is non-dissipative if the Courant
number is less than unity.

At this juncture, the reader may wonder what the merit is of constructing a neutrally
stable scheme. After all, it is well known that its nonlinear extensions generally are unstable.
To address this question, the signi�cance of constructing such a scheme and the critical role
it plays in the development of the CE/SE method will be discussed immediately.

To proceed, note that there are several explicit and implicit extensions [2,12,25] of the a
scheme which are solvers for

@u

@t
+ a

@u

@x
� �

@2u

@x2
= 0 (1:2)

Here the viscosity coe�cient �(� 0) is a constant. Because Eq. (1.2) is characterized by
the parameters a and �, these extensions are referred to as either the explicit a-� schemes
or the implicit a-� schemes. Each of these schemes reduces to the non-dissipative a scheme
when � = 0. As a result, each of them has the property that the numerical dissipation of its
solutions approaches zero as the physical dissipation approaches zero.

The above property is important because of the following observation: with a few ex-
ceptions, the numerical solution of a time-marching problem generally is contaminated by
numerical dissipation. For a nearly inviscid problem, e.g., ow at a large Reynolds number,
numerical dissipation may overwhelm physical dissipation and cause a complete distortion of
the solution. To avoid such a di�culty, ideally a CE/SE solver for Eq. (1.2) or for the Navier-
Stokes equations should possess the above special property. Obviously the development of
such a solver must be preceded by that of a neutrally stable solver of Eq. (1.1).

The problem of physical dissipation being overwhelmed by numerical dissipation does not
exist for a pure convection problem. However, as explained in the earlier discussion about
the delicate nature of simulating small disturbances in the presence of shocks, numerical
dissipation must still be handled carefully in this case.

Note that numerical dissipation traditionally is adjusted by varying the magnitude of
added arti�cial dissipation terms. However, after being stripped of these added arti�cial
dissipation terms, almost every traditional scheme (such as the Lax-Wendro� scheme) is still
not free from inherent numerical dissipation. Hence, numerical dissipation generally cannot
be avoided completely using the traditional approach.

This completes the discussion about the roles of non-dissipative schemes in the current
development. To proceed further, the construction of the 1D a scheme will be described
briey.

Let x1 = x, and x2 = t be considered as the coordinates of a two-dimensional Euclidean
space E2. By using Gauss' divergence theorem in the space-time E2, it can be shown that
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Figure 3: A surface element on the boundary S(V) of an arbitrary space-time region V.

Eq. (1.1) is the di�erential form of the integral conservation law

I
S(V )

~h � d~s = 0 (1:3)

As depicted in Fig. 3, here (i) S(V ) is the boundary of an arbitrary space-time region V in

E2; (ii) ~h = (au; u) is a current density vector in E2; and (iii) d~s = d� ~n with d� and ~n,
respectively, being the area and the outward unit normal of a surface element on S(V ). Note

that (i) ~h � d~s is the space-time ux of ~h leaving the region V through the surface element
d~s, and (ii) all mathematical operations can be carried out as though E2 were an ordinary
two-dimensional Euclidean space.

Let 
 denote the set of all mesh points (j; n) in E2 (dots in Fig. 4(a)) with n being a half or
whole integer, and (j � n) being a half integer. For each (j; n) 2 
, let the solution element
SE(j; n) be the interior of the space-time region bounded by a dashed curve depicted in
Fig. 4(b). It includes a horizontal line segment, a vertical line segment, and their immediate
neighborhood. For the discussions given in this paper, the exact size of this neighborhood
does not matter. However, in case the conservation law Eq. (1.3) takes a more complicated
form in which the right side is a volume integral involving a source term, the SEs must �ll
the entire computational domain such that the volume integral can be modeled properly
[21,22]. A SE that ful�lls this requirement is depicted in Fig. 4(c).

For any (x; t) 2 SE(j; n), let u(x; t) and~h(x; t), respectively, be approximated by u�(x; t ; j; n)

and ~h�(x; t ; j; n) which we shall de�ne shortly. Let

u�(x; t ; j; n) = unj + (ux)
n
j (x� xj) + (ut)

n
j (t� tn) (1:4)
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(a).   The staggered space-time mesh
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Figure 4: The SEs and CEs.
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where (i) unj , (ux)
n
j , and (ut)nj are constants in SE(j; n), and (ii) (xj; tn) are the coordinates

of the mesh point (j; n).

We shall require that u = u�(x; t ; j; n) satisfy Eq. (1.1) within SE(j; n). As a result,

(ut)
n
j = �a (ux)nj (1:5)

Combining Eqs. (1.4) and (1.5), one has

u�(x; t ; j; n) = unj + (ux)
n
j [(x� xj)� a (t� tn)]; (x; t) 2 SE(j; n) (1:6)

As a result, there are two independent marching variables unj and (ux)nj associated with each

(j; n) 2 
. Furthermore, because ~h = (au; u), we de�ne

~h�(x; t ; j; n) = (au�(x; t ; j; n); u�(x; t ; j; n)) (1:7)

Let E2 be divided into non-overlapping rectangular regions (see Fig. 4(a)) referred to as
conservation elements (CEs). As depicted in Figs. 4(d) and 4(e), the CE with its top-right
(top-left) vertex being the mesh point (j; n) 2 
 is denoted by CE�(j; n) (CE+(j; n)). The
discrete approximation of Eq. (1.3) is then

I
S(CE�(j;n))

~h� � d~s = 0 (1:8)

for all (j; n) 2 
. At each (j; n) 2 
, Eq. (1.8) provides the two conditions needed to solve
its two independent marching variables. In the following, the manner in which the integrals
in Eq. (1.8) should be evaluated will be explained by considering the case that involves
CE�(j; n).

According to Fig. 4(d), S(CE�(j; n)), i.e., the boundary of CE�(j; n), is formed by four
line segments. Among them, AB and AD lie within SE(j; n). As a result, the ux leaving
CE�(j; n) through these two line segments will be evaluated using Eqs. (1.6) and (1.7) with
the assumption that any point (x; t) on them belongs to SE(j; n). On the other hand, because
CB and CD lie within SE(j � 1=2; n � 1=2), the ux leaving CE�(j; n) through them will
be evaluated assuming any point (x; t) on them belongs to SE(j � 1=2; n � 1=2).

According to Eq. (1.8), the total ux of ~h� leaving the boundary of any conservation
element is zero. Because the surface integration over any interface separating two neighboring
CEs is evaluated using the information from a single SE, obviously the local conservation
relation Eq. (1.8) leads to a global ux conservation relation, i.e., the total ux of ~h� leaving
the boundary of any space-time region that is the union of any combination of CEs will also
vanish.

From the above discussions, it becomes obvious that the space-time element used in the
�nite element method di�ers from the current space-time SE and CE in both concept and
the roles they serve. In particular, the former is not introduced to enforce ux conservation.
In contrast to this, in the CE/SE method, ux conservation transmits information between
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Figure 4: (continued).

neighboring SEs, and no global smoothness requirements are made on the solution to link
neighboring SEs. This strategy enables the accurate capturing of traveling multidimensional
solution discontinuities, e.g., moving multidimensional shock waves.

Furthermore, the CE/SE method is also fundamentally di�erent from the traditional
�nite-volumemethods such as the high-resolution upwind methods [46,47] and the discontin-
uous Galerkin method [48] in one important respect, i.e., because of the space-time staggering
nature of its solution elements, the present method has a much simpler and consistent pro-
cedure to evaluate the ux at an interface. The key features of CE/SE ux-evaluation that
distinguish it from those of the traditional methods are discussed in the following remarks:

(a) Because an interface separating two neighboring CEs lies within a SE, the ux at this
interface is evaluated without interpolation or extrapolation. Furthermore, the SE to
which a particular interface belongs is determined by a rule that is independent of the
local numerical solution. In other words, the concept of special upwind treatments and
the complications that arise from these treatments are entirely foreign to the CE/SE
method. To be more speci�c, consider the ux at the interfaceAD depicted in Fig. 4(d).
It is completely determined by unj and (ux)nj , two numerical variables associated with
the predetermined mesh point (j; n), i.e., point A.

(b) Flux evaluation is straightforward and it requires only simple integration involving the
�rst-order Taylor's expansion. No complicated techniques such as the characteristics-
based techniques are ever needed.

Finally, we also want to emphasize that the concepts used in the construction of the
a scheme are fundamentally di�erent from several schemes introduced by Nessyahu and
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Tadmor[49], and Sanders and Weiser [50] except that the meshes used by the a scheme
and the latter schemes are all staggered in time. The key features of the a scheme that
distinguish it from the latter schemes include: (i) the mesh values of both the dependent
variable and its spatial derivative are considered as the independent variables, to be solved
for simultaneously; and (ii) no interpolation or extrapolation techniques are used in the
construction of the a scheme. Note that the di�erences between the latter schemes and an
extension of the a scheme were also clearly spelled out by Huynh [51].

This section is concluded with the following remarks:

(a) The a scheme can be constructed from a di�erent perspective in which both CEs and
SEs have the shape of a rhombus [2]. In this alternative construction, the di�erential
condition Eq. (1.5) is not assumed. Instead it becomes a result of a local ux conserva-
tion condition and Eq. (1.4). In other words, the a scheme can be constructed entirely
from ux conservation conditions and the assumption that u�(x; t ; j; n) is linear in x
and t.

(b) The a scheme has many non-traditional features. They were discussed in great detail
in [2].

(c) Because there are two independent marching variables at each mesh point 2 
, two
ampli�cation factors appear in the von Neumann stability analysis of the a scheme [2].
It happens that these two factors are identical to those of the Leapfrog scheme [52] if
the latter factors arise from a \correct" von Neumann analysis [2]. Note that the main
Leapfrog scheme (excluding its starting scheme which relates the mesh variables at the
�rst two time levels), the Lax scheme [52], and the main DuFort-Frankel scheme [52]
share one special property, i.e., a solution to any one of these schemes is formed by
two decoupled solutions. Traditionally the von Neumann analysis for these schemes is
performed without taking into account this decoupled nature. It is explained in [2] why
such an erroneous analysis will result in a dispersive property prediction that makes
the dispersion appear worse than it really is. Moreover, because (i) the a scheme and
the Leapfrog scheme share the same ampli�cation factors, and (ii) the a scheme is a
two-level scheme while the Leapfrog scheme is a three-level scheme, the a scheme can
be considered as a more advanced and compact Leapfrog scheme.

The fact that the ampli�cation factors of the a scheme are related to those of a
celebrated classical scheme is only one among a string of similar unexpected coinci-
dences encountered during the development of the CE/SE method. As it turns out
[2,12,25], the ampli�cation factors of the Lax, the Crank-Nicolson, and the DuFort-
Frankel schemes also are related to those of some of the extensions of the a scheme.
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2. Review of the 1D Schemes

In this section, we shall (i) review and reformulate the 1D schemes described in [2], and
(ii) �ll a gap in the derivation of Eq. (4.28) in [2]. Not only does the reformulation enable
the reader to see more clearly the structural similarity between the 1D solvers of Eq. (1.1)
and their Euler counterparts, it also makes it easier for him to appreciate the consistency
between the construction of the 1D CE/SE solvers and that of the 2D solvers to be described
in the later sections.

2.1. The a Scheme

As the �rst step, the marching procedure of the a scheme will be cast into a form slightly

di�erent from that given in [2]. To proceed, let the Courant number �
def
= a�t=�x. Also let

(u+x )
n
j

def
=

�x

4
(ux)

n
j (2:1)

for any (j; n) 2 
. Hereafter the superscript symbol \+" is used to denote a normalized
parameter. Using Eq. (2.1), Eqs. (1.6){(1.8) imply that

h
(1� �)u+ (1� �2)u+x

in
j
=
h
(1� �)u� (1� �2)u+x

in�1=2
j+1=2

(2:2)

and h
(1 + �)u� (1� �2)u+x

in
j
=
h
(1 + �)u+ (1 � �2)u+x

in�1=2
j�1=2

(2:3)

for all (j; n) 2 
. To simplify notation, in the above and hereafter we adopt a convention
that can be explained using the expression on the left side of Eq. (2.2) as an example, i.e.,h

(1 � �)u+ (1� �2)u+x
in
j
= (1� �)unj + (1 � �2)(u+x )

n
j

Moreover, to streamline the future development, we de�ne

(s+)
n�1=2
j+1=2

def
=
h
u� (1 + �)u+x

in�1=2
j+1=2

(2:4)

(s�)
n�1=2
j�1=2

def
=
h
u+ (1� �)u+x

in�1=2
j�1=2

(2:5)

and

(ua+x )nj
def
=

1

2

h
(s+)

n�1=2
j+1=2 � (s�)

n�1=2
j�1=2

i
(2:6)

By adding Eqs. (2.2) and (2.3) together, and using the above de�nitions, one has

unj =
1

2

h
(1 � �)(s+)

n�1=2
j+1=2 + (1 + �)(s�)

n�1=2
j�1=2

i
; (j; n) 2 
 (2:7)

Let 1 � �2 6= 0, i.e., 1 � � 6= 0 and 1 + � 6= 0. Then Eqs. (2.2) and (2.3) can be divided by
(1��) and (1+�), respectively. By subtracting the resulting equations from each other and
using Eqs. (2.4){(2.6), one has

(u+x )
n
j = (ua+x )nj ; (j; n) 2 
 (2:8)

15



Because both (s+)
n�1=2
j+1=2 and (s�)

n�1=2
j�1=2 are explicit functions of the marching variables at

the (n � 1=2)th time level, Eqs. (2.7) and (2.8) form the explicit marching procedure for
the a scheme. Note that these equations can be obtained from the inviscid form of the a-�
scheme, i.e., Eq. (2.14) in [2]. Also note that the superscript symbol \a" in the parameter
(ua+x )nj is introduced to remind the reader that Eq. (2.8) is valid for the a scheme.

2.2. The a-� Scheme

In the a-� scheme [2], CE+(j; n) and CE�(j; n), which are depicted in Figs. 4(d) and
4(e), respectively, are not considered as conservation elements, i.e., Eq. (1.8) is no longer
applicable. Instead, one assumes thatI

S(CE(j;n))

~h� � d~s = 0; (j; n) 2 
 (2:9)

where CE(j; n) is the union of CE+(j; n) and CE�(j; n) (see Fig. 4(f)). In other words,
CE(j; n) is a conservation element in the a-� scheme. Again the local conservation condition

Eq. (2.9) leads to a global conservation condition [2], i.e., the total ux of ~h� leaving the
boundary of any space-time region that is the union of any combination of new CEs will also
vanish.

It was explained in [2] that Eq. (2.7) follows directly from Eq. (2.9). As a result, the
former is also valid in the a-� scheme. The a-� scheme is formed by Eq. (2.7) and another
equation that di�ers from Eq. (2.8) only in the expression on the right side. To show more
clearly the similarity of the 1D schemes and their 2D versions to be described in the later
sections, in the following, the counterpart of Eq. (2.8) in the a-� scheme will be rederived
from a perspective di�erent from that presented in [2].

Let (j; n) 2 
. Then (j � 1=2; n � 1=2) 2 
. Let

u0nj�1=2
def
= u

n�1=2
j�1=2 + (�t=2)(ut)

n�1=2
j�1=2 (2:10)

Substituting Eqs. (1.5) and (2.1) into Eq. (2.10) and using the de�nition � = a�t=�x, one
has

u0nj�1=2 =
h
u� 2� u+x

in�1=2
j�1=2

(2:11)

Note that, by de�nition, (j�1=2; n) =2 
 if (j; n) 2 
. Thus u0nj�1=2 is associated with a mesh
point =2 
. The reader is warned that similar situations may occur in the rest of this paper.

According to Eq. (2.10), u0nj�1=2 can be interpreted as a �rst-order Taylor's approximation
of u at (j � 1=2; n). Thus

(uc+x )nj
def
=

u0nj+1=2 � u0nj�1=2
4

=
�x

4

 
u0nj+1=2 � u0nj�1=2

�x

!
(2:12)

is a central-di�erence approximation of @u=@x at (j; n), normalized by the same factor �x=4
that appears in Eq. (2.1). Note that the superscript \c" is used to remind the reader of the
central-di�erence nature of the term (uc+x )nj . In the a-� scheme, Eq. (2.8) is replaced by

(u+x )
n
j = (ua+x )nj + 2�(uc+x � ua+x )nj (2:13)
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where � is a real number.

At this juncture, note that, at each mesh point (j; n) 2 
, Eqs. (2.7) and (2.8) are the
results of two conservation conditions given in Eq. (1.8). Because Eq. (2.13) does not reduce
to Eq. (2.8) except in the special case � = 0, at each mesh point (j; n) 2 
, generally the
a-� scheme satis�es only the single conservation condition Eq. (2.9) rather than the two
consevation conditions Eq. (1.8). However, because (ua+x )nj generally is present on the right
side of Eq. (2.13), the a-� scheme generally will still be burdened with the cost of solving
two conservation conditions at each mesh point. The exception occurs only for the special
case � = 1=2, under which Eq. (2.13) reduces to (u+x )

n
j = (uc+x )nj .

Note that the �rst part of the expression on the right side of Eq. (2.13), i.e., (ua+x )nj ,
emerges from the development of the non-dissipative a scheme. As a result, it is the non-
dissipative part. On the other hand, the second part, whose magnitude can be adjusted by
the parameter �, represents numerical dissipation introduced by the di�erence between the
central di�erence term (uc+x )nj and the non-dissipative term (ua+x )nj . Thus one may heuristi-
cally conclude that the numerical dissipation associated with the a-� scheme can be increased
by increasing the value of �. It was shown in [2] that this conclusion is indeed valid in the
stability domain of the a-� scheme, i.e.,

0 � � � 1; and �2 < 1 (2:14)

According to Eqs. (2.4){(2.6), (2.11) and (2.12), both (uc+x )nj and (ua+x )nj are explicitly
dependent on � (and therefore explicitly dependent on �t). However, (uc+x � ua+x )nj is not
dependent on �. As a matter of fact, it can be shown that

(uc+x � ua+x )nj =
1

2

h
(u+x )

n�1=2
j+1=2 + (u+x )

n�1=2
j�1=2

i
� 1

4

�
u
n�1=2
j+1=2 � u

n�1=2
j�1=2

�
(2:15)

Let (dux)nj be the parameter de�ned by Eq. (3.2) in [2]. Then it can be shown that

(uc+x � ua+x )nj =
�x

4
(dux)

n
j (2:16)

Note that, in the original development [2], (dux)nj was introduced to break the symmetry
of the stencil of the a scheme with respect to space-time inversion. This symmetry breaking
results in the a-� scheme that was originally de�ned by the matrix equation Eq. (3.6) of [2].
Its two component equations are Eq. (2.7) and

(u+x )
n
j = (ua+x )nj + �

�
(u+x )

n�1=2
j+1=2 + (u+x )

n�1=2
j�1=2 �

1

2

�
u
n�1=2
j+1=2 � u

n�1=2
j�1=2

��
(2:17)

with the latter being equivalent to Eq. (2.13). It should be emphasized that the fact that
(u+x )

n
j = (uc+x )nj when � = 1=2, and that therefore the a-� scheme can be considered as a

central-di�erence scheme in this special case, was a later accidental discovery.

2.3. The Euler a Scheme
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For a reason that will soon become obvious to the reader, reformulation of the inviscid
(� = 0) version of the Navier-Stokes solver described in Section 5 of [2] will precede that of
the Euler solvers described in Section 4 of [2]. Because the inviscid version is also an Euler
solver and, like the a scheme, is free of numerical dissipation if it is stable, it will be referred
to as the Euler a scheme.

To proceed, consider the Euler equations [2]

@um
@t

+
@fm
@x

= 0; m = 1; 2; 3 (2:18)

where (i) um, m = 1; 2; 3, are the independent ow variables to be solved for, and (ii) fm,
m = 1; 2; 3, are known functions [2] of um, m = 1; 2; 3. Assuming that the physical solution
is smooth, Eq. (2.18) is a result of the more fundamental space-time ux conservation lawsI

S(V )

~hm � d~s = 0; m = 1; 2; 3 (2:19)

where ~hm = (fm; um), m = 1; 2; 3.

To proceed, let (i)

fm;k
def
= @fm=@uk; m; k = 1; 2; 3 (2:20)

and (ii) F+ be the 3� 3 matrix formed by (�t=�x)fm;k, m;k = 1; 2; 3. Note that, as a result
of (ii), F+ = (�t=�x)F where F is the matrix that appears in Eq. (4.8) in [2]. Also let
(um)

n
j be the numerical version of um at any (j; n) 2 
. Because fm and fm;k are functions

of um, for any (j; n) 2 
, we can de�ne (fm)nj and (fm;k)nj to be the values of fm and fm;k,
respectively, when um, m = 1; 2; 3, respectively, assume the values of (um)nj , m = 1; 2; 3.
Furthermore, because fm, m = 1; 2; 3, are homogeneous functions of degree 1 [53, p. 11] in
the variables um, m = 1; 2; 3, we have

(fm)
n
j =

3X
k=1

(fm;k)
n
j (uk)

n
j (2:21)

Note that Eq. (2.21) is not essential in the development of the 1D CE/SE Euler solvers.
However, in some instances, it is used to recast some equations into more convenient forms.

For any (x; t) 2 SE(j; n), um(x; t), fm(x; t) and ~hm(x; t) are approximated by

u�m(x; t ; j; n)
def
= (um)

n
j + (umx)

n
j (x� xj) + (umt)

n
j (t� tn) (2:22)

f�m(x; t ; j; n) = (fm)
n
j + (fmx)

n
j (x� xj) + (fmt)

n
j (t� tn) (2:23)

and
~h�m(x; t ; j; n) = (f�m(x; t ; j; n); u

�
m(x; t ; j; n)) (2:24)

respectively [2]. Here (i) (um)nj and (umx)nj are the independent marching variables to be
solved for, and (ii) (fmx)nj , (fmt)nj , and (umt)nj are the functions of (um)nj and (umx)nj , m =
1; 2; 3, de�ned by Eqs. (4.10), (4.11), and (4.17) in [2].
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For all (j; n) 2 
, we assume that

I
S(CE�(j;n))

~h�m � d~s = 0; m = 1; 2; 3 (2:25)

Note that Eqs. (2.18), (2.19) and (2.25) are the Euler counterparts of Eqs. (1.1), (1.3)
and (1.8), respectively. With the aid of Eqs. (2.22){(2.24), Eq. (2.25) implies that, for all
(j; n) 2 
,

(um)
n
j � (um)

n�1=2
j�1=2 �

�x

4

h
(umx)

n�1=2
j�1=2 + (umx)

n
j

i

� �t

�x

h
(fm)

n�1=2
j�1=2 � (fm)

n
j

i
� (�t)2

4�x

h
(fmt)

n�1=2
j�1=2 + (fmt)

n
j

i
= 0: (2.26)

Eq. (2.26) is the inviscid version of the Navier-Stokes marching scheme originally given in
Eq. (5.19) of [2].

For each (j; n) 2 
, let (i)

(u+mx)
n
j
def
=

�x

4
(umx)

n
j ; m = 1; 2; 3 (2:27)

(ii) ~unj and (~u+x )
n
j , respectively, be the 3 � 1 column matrices formed by (um)nj and (u+mx)

n
j ,

m = 1; 2; 3, and (iii) (F+)nj be the 3 � 3 matrix formed by (�t=�x)(fm;k)nj , m;k = 1; 2; 3.
Then with the aid of Eqs. (4.10), (4.11) and (4.17) in [2], and Eq. (2.21), one can rewrite
Eq. (2.26) as a pair of matrix equations, i.e. for any (j; n) 2 
,

h
(I � F+)~u+

�
I � (F+)2

�
~u+x
in
j
=
h
(I � F+)~u�

�
I � (F+)2

�
~u+x
in�1=2
j+1=2

(2:28)

and

h
(I + F+)~u�

�
I � (F+)2

�
~u+x
in
j
=
h
(I + F+)~u+

�
I � (F+)2

�
~u+x
in�1=2
j�1=2

(2:29)

where I is the 3� 3 identity matrix.

Note that the ux conservation conditions Eqs. (2.2) and (2.3), and its Euler counterparts,
i.e., Eqs. (2.28) and (2.29) share the same algebraic structure. As a matter of fact, the former
pair will become the latter pair if the symbols 1, �, u and u+x are replaced by I, F+, ~u and
~u+x , respectively. As a result, Eqs. (2.28) and (2.29) will be solved by a procedure similar to
that used earlier to extract Eqs. (2.7) and (2.8) from Eqs. (2.2) and (2.3). However, because
(i) matrix multiplication is not commutative and (ii) the matrix (F+)nj is a function of (um)

n
j ,

m = 1; 2; 3, while � is a simple constant, as will be shown shortly, the algebraic structure of
the solution to Eqs. (2.28) and (2.29) is more complex than that of Eqs. (2.7) and (2.8).

To proceed, let (j; n) 2 
 and

(~s+)
n�1=2
j+1=2

def
=
h
~u� (I + F+)~u+x

in�1=2
j+1=2

(2:30)
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and

(~s�)
n�1=2
j�1=2

def
=
h
~u+ (I � F+)~u+x

in�1=2
j�1=2

(2:31)

Then the addition of Eqs. (2.28) and (2.29) implies that

~unj =
1

2

�h
(I � F+)~s+

in�1=2
j+1=2

+
h
(I + F+)~s�

in�1=2
j�1=2

�
(2:32)

Note that: (i) Eq. (2.32) is equivalent to Eq. (4.24) in [2]; and (ii) Eqs. (2.30){(2.32) are the
Euler counterparts of Eqs. (2.4), (2.5) and (2.7), respectively.

Equation (2.32) represents the �rst part of the solution to Eqs. (2.28) and (2.29). To
obtain the second part, one must assume the existence of the inverse of the matrix [I�(F+)2]nj
for all (j; n) 2 
. In the following, we shall briey discuss the signi�cance of this assumption.

Let v and c be the uid speed and sonic speed, respectively. They are known functions
of um, m = 1; 2; 3 [2]. For each (j; n) 2 
, let vnj and cnj , respectively, denote the values of v
and c when um, m = 1; 2; 3, respectively, assume the values of (um)nj , m = 1; 2; 3. Let

(�1)
n
j

def
=

�t

�x
(vnj � cnj ); (�2)

n
j
def
=

�t

�x
vnj ; (�3)

n
j
def
=

�t

�x
(vnj + cnj ) (2:33)

Then, by using (i) the relation F+ = (�t=�x)F , (ii) the fact that the eigenvalues of the
matrix F are v � c, v and v + c (see Eq. (4.8) in [2]), and (iii) the fact that the eigenvalues
of f(A) are f(�1), f(�2), f(�3), : : :, f(�n) if the eigenvalues of a matrix A are �1, �2, �3,
: : :, �n and f(A) is a polynomial of A, one concludes that the eigenvalues of [I� (F+)2]nj are
[1� ((�`)nj )

2], ` = 1; 2; 3. Because any square matrix is nonsingular (and therefore its inverse
exists) if and only if all its eigenvalues are nonzero [54, p.14], one concludes that the inverse
of [I � (F+)2]nj exists if and only if

[(�`)
n
j ]
2 6= 1; ` = 1; 2; 3 (2:34)

In this paper, we shall assume a more restrictive condition than Eq. (2.34), i.e., for all
(j; n) 2 
, the local Courant number �nj < 1. Here

�nj
def
= maxfj(�1)nj j; j(�2)nj j; j(�3)nj jg (2:35)

Note that, because

(I � F+)(I + F+) = (I + F+)(I � F+) = I � (F+)2 (2:36)

the inverse of [I � (F+)]nj exists if the inverse of [I � (F+)2]nj exists.

Let (j; n) 2 
. Let the marching variables at the (n� 1=2)th time level be given. Then
~unj can be evaluated using Eq. (2.32). Because [I � F+]nj is a function of ~unj , it follows that

(~S+)
n
j

def
=
h
(I � F+)nj

i�1 h
(I � F+)~u�

�
I � (F+)2

�
~u+x
in�1=2
j+1=2

(2:37)
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(~S�)
n
j

def
=
h
(I + F+)nj

i�1 h
(I + F+)~u+

�
I � (F+)2

�
~u+x
in�1=2
j�1=2

(2:38)

and

(~ua+x )nj
def
=

1

2
(~S+ � ~S�)

n
j (2:39)

can also be evaluated. Note that, in the above and hereafter, the inverse of a matrix A is
denoted by A�1.

To obtain the second part of the solution to Eqs. (2.28) and (2.29), they are multiplied
from the left by h

(I � F+)nj
i�1

and
h
(I + F+)nj

i�1
respectively. Let the resulting expressions be subtracted from each other. Then, with the
aid of Eq. (2.36), one obtains

(~u+x )
n
j = (~ua+x )nj ; (j; n) 2 
 (2:40)

Equations (2.32) and (2.40) de�ne the marching procedure of the Euler a scheme. Note that
the superscript symbol \a" in (~ua+x )nj is intoduced to remind the reader that Eq. (2.40) is
valid for the Euler a scheme.

It has been shown by numerical experiments that the Euler a scheme is neutrally stable
in the interior of the computational domain up to at least a thousand time steps when
�nj < 1 for all (j; n) 2 
. In these numerical experiments involving a shock-tube problem,
the computational domain was allowed to grow with time, so that the undisturbed uid
state could always be prescribed at the computational boundaries as the exact solution. As
a matter of fact, by using an analysis similar to that given at the end of Sec. 6 in [7], one
can show that the linearized form of the Euler a scheme is neutrally stable when �nj < 1 for
all (j; n) 2 
.

The parameters (~S+)nj and (~S�)
n
j can be evaluated by using Eqs. (2.37) and (2.38) directly.

This direct evaluation involves inverting two 3� 3 matrices which is computationally costly.
In the following, we shall describe a more e�cient approach.

According to Eqs. (2.37) and (2.38), (~S+)nj and (~S�)nj are the solutions to

(I � F+)nj (~S+)
n
j =

h
(I � F+)~u�

�
I � (F+)2

�
~u+x
in�1=2
j+1=2

(2:41)

and

(I + F+)nj (~S�)
n
j =

h
(I + F+)~u+

�
I � (F+)2

�
~u+x
in�1=2
j�1=2

(2:42)

respectively. Note that: (i) each of Eqs. (2.41) and (2.42) represents a system of three
scalar equations; (ii) because of the reason given in the paragraph preceding Eq. (2.37), the
coe�cients of both systems are known if the marching variables at the (n�1=2)th time level
are given, i.e., both systems can be considered as linear; and (iii) because of the assumption

�nj < 1, each system has a unique solution. As a result of (i){(iii), both (~S+)nj and (~S�)nj can
be solved e�ciently by using the Gaussian elimination method.
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2.4. The Simpli�ed Euler a scheme

In implementing the Euler a scheme, two systems of linear equations must be solved for
each (j; n) 2 
. As a result, the Euler a scheme is locally implicit [1, p.22]. In this subsection
we shall develop a simpli�ed version that is completely explicit.

To proceed, the expressions

h
(I � F+)nj

i�1
and

h
(I + F+)nj

i�1
in Eqs. (2.37) and (2.38) are approximated by

h
(I � F+)

n�1=2
j+1=2

i�1
and

h
(I + F+)

n�1=2
j�1=2

i�1
respectively. As a result, one has

(~S+)
n
j � (~s+)

n�1=2
j+1=2 and (~S�)

n
j � (~s�)

n�1=2
j�1=2 (2:43)

where (~s+)
n�1=2
j+1=2 and (~s�)

n�1=2
j�1=2 are de�ned in Eqs. (2.30) and (2.31), respectively. Let

(~ua
0+

x )nj
def
=

1

2

h
(~s+)

n�1=2
j+1=2 � (~s�)

n�1=2
j�1=2

i
(2:44)

Then (i) (~ua
0+

x )nj can be evaluated explicitly, and (ii) as a result of Eqs. (2.39) and (2.43),
Eq. (2.40) can be approximated by

(~u+x )
n
j = (~ua

0+
x )nj ; (j; n) 2 
 (2:45)

The marching procedure de�ned by Eqs. (2.32) and (2.45) is referred to as the simpli�ed
Euler a scheme. Note that the superscript symbol \a0" in (~ua

0+
x )nj is introduced to remind

the reader that Eq. (2.45) is valid for the simpli�ed Euler a scheme.

Generally CE�(j; n), (j; n) 2 
, are not conservation elements in the simpli�ed scheme.
However, because Eq. (2.32) is equivalent to the conservation condition [2]

I
S(CE(j;n))

~h�m � d~s = 0; (j; n) 2 
 and m = 1; 2; 3 (2:46)

CE(j; n), (j; n) 2 
, are the conservation elements in the simpli�ed scheme.

Note that by replacing the symbols s+, s�, ua+x , u, u+x , 1 and � in Eqs. (2.4){(2.8) by
~s+, ~s�, ~ua

0+
x , ~u, ~u+x , I and F+, respectively, these equations will become Eqs. (2.30), (2.31),

(2.44), (2.32) and (2.45), respectively. In other words, the a scheme and the simpli�ed Euler
a scheme share the same algebraic structure.

The simpli�ed Euler a scheme generally is unstable. However, as will be shown shortly,
this scheme can be extended to become the simpli�ed Euler a-� scheme which does have a
large stability domain.
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2.5. The Euler a-� Scheme

The process by which the a-� scheme was constructed from the a scheme will be used to
construct the Euler a-� scheme from the Euler a scheme.

In the Euler a-� scheme, the conservation conditions given in Eq. (2.46) are assumed.
Because Eq. (2.32) is equivalent to Eq. (2.46), the former is also a part of of the Euler a-�
scheme. The Euler a-� scheme is formed by Eq. (2.32) and another equation that di�ers
from Eq. (2.40) only in the expression on the right side.

To proceed, let (j; n) 2 
 and

~u 0nj�1=2
def
= ~u

n�1=2
j�1=2 + (�t=2)(~ut)

n�1=2
j�1=2 (2:47)

where (~ut)
n�1=2
j�1=2 is the column matrix formed by (umt)

n�1=2
j�1=2 , m = 1; 2; 3. With the aid of

Eqs. (4.10) and (4.17) in [2], Eq. (2.47) implies that

~u 0nj�1=2 = (~u� 2F+~u+x )
n�1=2
j�1=2 (2:48)

Let

(~uc+x )nj
def
=

~u 0nj+1=2 � ~u 0nj�1=2
4

(2:49)

Then the Euler a-� scheme is formed by Eq. (2.32) and

(~u+x )
n
j = (~ua+x )nj + 2�(~uc+x � ~ua+x )nj (2:50)

where � is a real number. Obviously Eq. (2.50) reduces to (i) Eq. (2.40) when � = 0, and
(ii) (~u+x )

n
j = (~uc+x )nj when � = 1=2. Also it has been shown numerically that (i) the Euler a-�

scheme generally is stable if

0 � � � 1; and �nj < 1 for all (j; n) 2 
 (2:51)

and (ii) the numerical dissipation associated with the scheme increases as the value of �
increases. Note that Eqs. (2.47){(2.50) are the Euler counterparts of Eqs. (2.10){(2.13),
respectively.

2.6. The Simpli�ed Euler a-� Scheme

According to Eq. (2.50), excluding the special case � = 1=2, implementation of the Euler
a-� scheme also requires the evaluation of (~ua+x )nj and therefore (see Eqs. (2.37){(2.39)) the
solution of Eqs. (2.41) and (2.42). Thus the Euler a-� scheme is locally implicit if � 6= 1=2. A
totally explicit variant, referred to as the simpli�ed Euler a-� scheme, is de�ned by Eq. (2.32)
(or, equivalently, Eq. (2.46)) and

(~u+x )
n
j = (~ua

0+
x )nj + 2�(~uc+x � ~ua

0+
x )nj (2:52)

Obviously the simpli�ed Euler a-� scheme (i) reduces to the simpli�ed Euler a scheme when
� = 0, and (ii) is identical to the Euler a-� scheme when � = 1=2.
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Note that by replacing the symbols s+, s�, ua+x , u, u+x , u
0, uc+x , 1 and � in Eqs. (2.4){(2.7)

and (2.11){(2.13) by ~s+, ~s�, ~ua
0+

x , ~u, ~u+x , ~u
0, ~uc+x , I and F+, respectively, these equations

will become Eqs. (2.30), (2.31), (2.44), (2.32), (2.48), (2.49) and (2.52) respectively. In other
words, the a-� scheme and the simpli�ed Euler a-� scheme share the same algebraic structure.

It has been shown numerically that the simpli�ed Euler a-� scheme is stable if

0:03 � � � 1; and �nj < 1 for all (j; n) 2 
 (2:53)

A comparison between Eqs. (2.51) and (2.53) reveals that the simpli�ed version is only
slightly less stable than the original version.

According to Eqs. (2.30), (2.31), (2.44), (2.48) and (2.49), both (~uc+x )nj and (~ua
0+

x )nj are

explicitly dependent on the the matrices (F+)n�1=2j+1=2 and (F+)n�1=2j�1=2 (and therefore explicitly

dependent on �t). However, (~uc+x � ~ua
0+

x )nj is free from this dependency. Let (i) (dumx)
n
j be

the parameter de�ned by Eq. (4.26) in [2], and (ii) (d~ux)nj be the column matrix formed by
(dumx)nj , m = 1; 2; 3. Then it can be shown that

(~uc+x � ~ua
0+

x )nj =
1

2

h
(~u+x )

n�1=2
j+1=2 + (~u+x )

n�1=2
j�1=2

i
� 1

4

�
~u
n�1=2
j+1=2 � ~u

n�1=2
j�1=2

�
=

�x

4
(d~ux)

n
j (2:54)

With the above preliminaries, we are now ready to provide a proof for Eq. (4.28) in [2].
Note that the last equation was introduced in [2] simply as a \natural generalization" of
Eq. (3.10) in [2].

To proceed, note that Eq. (2.47) is the matrix form of Eq. (4.27) in [2], i.e., ~u 0nj�1=2 is
the column matrix formed by (u0m)

n
j�1=2, m = 1; 2; 3, which were introduced in the latter

equation. As a result, with the aid of Eqs. (2.27), (2.49) and (2.54), Eq. (2.52) can be
rewritten as

(umx)
n
j =

h
(u0m)

n
j+1=2 � (u0m)

n
j�1=2

i
=�x+ (2�� 1)(dumx)

n
j (2:55)

i.e., Eq. (4.28) in [2].

Because Eqs. (4.24) in [2] are equivalent to Eq. (2.32), the Euler scheme de�ned by
Eqs. (4.24) and (4.28) in [2] is identical to the simpli�ed Euler a-� scheme.

2.7. The a-�-�-� Scheme and Its Euler Versions

Consider the a-� scheme de�ned by Eqs. (2.7) and (2.13). If discontinuities are present in
a numerical solution, the above scheme is not equipped to suppress numerical wiggles that
generally appear near these discontinuities. In the following, we shall describe a remedy for
this de�ciency.

Let

(uc+x�)
n
j

def
= �1

2
(u0nj�1=2 � unj ) (2:56)

Then it can be shown that

(uc+x )nj =
1

2

h
(uc+x+)

n
j + (uc+x�)

n
j

i
(2:57)
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i.e., (uc+x )nj is the simple average of (uc+x+)
n
j and (uc+x�)

n
j . Next, let the function Wo be de�ned

by (i) Wo(0; 0; �) = 0 and (ii)

Wo(x�; x+;�) =
jx+j�x� + jx�j�x+
jx+j� + jx�j� ; (jx+j+ jx�j > 0) (2:58)

where x+, x� and � � 0 are real variables. Note that (i) to avoid dividing by zero, in practice
a small positive number such as 10�60 is added to the denominator in Eq. (2.58); and (ii)
Wo(x�; x+;�), a nonlinear weighted average of x� and x+, becomes their simple average if
� = 0 or jx�j = jx+j. Furthermore, let

(uw+x )nj
def
= Wo

�
(uc+x+)

n
j ; (u

c+
x�)

n
j ;�

�
(2:59)

Note that the superscript \w" is used to remind the reader of the weighted-average nature
of the term (uw+x )nj . With the aid of the above de�nitions, a more advanced scheme, referred
to as the a-�-�-� scheme, can be de�ned by Eq. (2.7) and

(u+x )
n
j = (ua+x )nj + 2�(uc+x � ua+x )nj + �(uw+x � uc+x )nj (2:60)

Here � � 0 is another adjustable constant. Note that Eq. (2.60) can be rewritten as

(u+x )
n
j = �Wo

�
(uc+x+)

n
j ; (u

c+
x�)

n
j ;�

�
+ (1� �)(uc+x )nj + (2�� 1)(uc+x � ua+x )nj (2:61)

It can be shown easily that the a-�-�-� scheme reduces to the a-� scheme if � = 0 or � = 0.

The expression on the right side of Eq. (2.60) contains three parts. The �rst part is a
non-dissipative term (ua+x )nj . The second part is the product of 2� and the di�erence between
the central di�erence term (uc+x )nj and the non-dissipative term (ua+x )nj . The third part is the
product of � and the di�erence between a weighted average of (uc+x+)

n
j and (uc+x�)

n
j and their

simple average. Numerical dissipation introduced by the second part generally is e�ective
in damping out numerical instabilities that arise from the smooth region of a solution. But
it is less e�ective in suppressing numerical wiggles that often occur near a discontinuity.
On the other hand, numerical dissipation introduced by the third part is very e�ective in
suppressing numerical wiggles. Moreover, because the condition j(uc+x+)nj j = j(uc+x�)nj j more or
less prevails and thus the weighted average is nearly equal to the simple average (see the
comment given immediately following Eq. (2.58)) in the smooth region of the the solution,
numerical dissipation introduced by the third part has very slight e�ect in the smooth region.

From the above disscusion, one concludes that there are two di�erent types of numerical
dissipation associated with the a-�-�-� scheme and they complement each other. As a result,
the a-�-�-� scheme can handle both small disturbances and sharp discontinuies simultane-
ously if the values of �, � and � are chosen properly (usually � = 1=2, � = 1; 2 and � = 1).
Also note that, to give the CE/SE method more exibility in controlling local numerical
dissipation, the parameters � and � can even be considered as functions of local dynamical
variables and mesh parameters (see Sec. 8).

Similarly, the Euler a-� scheme and the simpli�ed Euler a-� scheme can be modi�ed to
become the Euler a-�-�-� scheme and the simpli�ed Euler a-�-�-� scheme, respectively, by

25



simply replacing Eqs. (2.50) and (2.52) with

(~u+x )
n
j = (~ua+x )nj + 2�(~uc+x � ~ua+x )nj + �(~uw+x � ~uc+x )nj (2:62)

and
(~u+x )

n
j = (~ua

0+
x )nj + 2�(~uc+x � ~ua

0+
x )nj + �(~uw+x � ~uc+x )nj (2:63)

respectively. Here (~uw+x )nj is the 3 � 1 column matrix formed by

Wo

�
(uc+mx+)

n
j ; (u

c+
mx�)

n
j ;�

�
; m = 1; 2; 3

where

(uc+mx�)
n
j
def
= �1

2
((u0m)

n
j�1=2 � (um)

n
j ) (2:64)

with (u0m)
n
j�1=2 and (um)nj being the mth components of ~u 0nj�1=2 and ~unj , respectively.

2.8. The 1D CE/SE Shock-Capturing Scheme

Let � = 1=2 and � = 1. Then the Euler a-�-�-� scheme and the simpli�ed Euler a-�-�-�
scheme reduce to the same scheme. The reduced scheme is de�ned by Eq. (2.32) and

(u+mx)
n
j = Wo

�
(uc+mx+)

n
j ; (u

c+
mx�)

n
j ;�

�
; m = 1; 2; 3 (2:65)

where (j; n) 2 
.

The above scheme is one of the simplest among the Euler solvers known to the authors.
The value of � is the only adustable parameter allowed in this scheme. Because it is totally
explicit and has the simplest stencil, the scheme is also highly compatible with parallel
computing. Furthermore, it has been shown that the scheme can accurately capture shocks
and contact discontinuities with high resolution and no numerical oscillations. For these
distinctive features and for convenience of future reference, the reduced scheme will be given
a special name, i.e., the 1D CE/SE shock-capturing scheme. Note that this scheme with
� = 1 is implemented in the two shock-tube solvers referred to in Sec. 1. Consider only the
case that all spatial boundary points (j; n) 2 
 are at the time levels n = 0; 1; 2; : : : (see
Fig. 4(a)). The non-reecting boundary conditions used in the �rst solver, i.e., the one listed
in Appendix A, are: (i)

~unj = ~u
n�1=2
j�1=2 and (~u+x )

n
j = (~u+x )

n�1=2
j�1=2 ; n = 1; 2; 3; : : : (2:66)

if (j; n) is a mesh point on the right spatial boundary; and (ii)

~unj = ~u
n�1=2
j+1=2 and (~u+x )

n
j = (~u+x )

n�1=2
j+1=2 ; n = 1; 2; 3; : : : (2:67)

if (j; n) is a mesh point on the left spatial boundary. On the other hand, for the alternate
solver, the steady-state boundary conditions

~unj = ~u0j and (~u+x )
n
j = (~u+x )

0
j ; n = 1; 2; 3; : : : (2:68)

is imposed at any mesh point (j; n) on the right or left spatial boundary.
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3. Geometrical Description of Conservation Elements
in Two Spatial Dimensions

In Sec. 2, it was established that, for each 1D CE/SE solver, there were 2M indepen-
dent marching variables per mesh point with M being the number of conservation laws to
be solved. Because M conservation conditions are imposed over each CE, two CEs were
introduced at each mesh point such that both the 1D a scheme and the 1D Euler a scheme
can be constructed by solving, at each mesh point (j; n) 2 
, for the 2M variables using the
2M conservation conditions imposed over CE�(j; n) and CE+(j; n).

As will be shown in the following sections, for each 2D CE/SE solver, there are 3M
independent marching variables per mesh point. As a result, construction of the 2D a
scheme and the 2D Euler a scheme demands that three CEs be de�ned at each mesh point.
In this section, only the basic geometric structures of these CEs will be described.

Consider a spatial domain formed by congruent triangles (see Fig. 5). The center of each
triangle is marked by either a hollow circle or a solid circle. The distribution of these hollow
and solid circles is such that if the center of a triangle is marked by a solid (hollow) circle,
then the centers of the three neighboring triangles with which the �rst triangle shares a side
are marked by hollow (solid) circles. As an example, point G , the center of the triangle
�BDF , is marked by a solid circle while points A, C and E, the centers of the triangles
�FMB, �BJD and �DLF , respectively, are marked by hollow circles. These centers are
the spatial projections of the space-time mesh points used in the 2D CE/SE solvers.

To specify the exact locations of the mesh points in space-time, one must also specify their
temporal coordinates. In the 2D CE/SE development, again we assume that the mesh points
are located at the time levels n = 0;�1=2;�1;�3=2; : : : with t = n�t at the nth time level.
Furthermore, we assume that the spatial projections of the mesh points at a whole-integer
(half-integer) time level are the points marked by hollow (solid) circles in Fig. 5.

Let the triangles depicted in Fig. 5 lie on the time level n = 0. Then those points marked
by hollow circles are the mesh points at this time level. On the other hand, those points
marked by solid circles are not the mesh points at the time level n = 0. They are the spatial
projections of the mesh points at half-integer time levels.

Points A, C and E, which are depicted in Figs. 5 and 6(a), are three mesh points at the
time level n = 0. Point G0, which is depicted in Fig. 6(a), is a mesh point at the time level
n = 1=2. Its spatial projection at the time level n = 0 is point G. Because point G is not a
mesh point, it is not marked by a circle in the space-time plots given in Figs. 6(a) and 6(c).
Hereafter, only a mesh point, e.g., point G0, will be marked by a solid or hollow circle in a
space-time plot.

The conservation elements associated with point G0 are de�ned to be the space-time
quadrilateral cylinders GFABG0F 0A0B0, GBCDG0B0C 0D0, and GDEFG0D0E0F 0 that are
depicted in Fig. 6(a). Here (i) points B, D and F are the vertices of the triangle with point
G as its center (centroid) (see also Fig. 5), and (ii) points A0, B0, C 0, D0, E0 and F 0 are on
the time level n = 1=2 with their spatial projections on the time level n = 0 being points A,

27



Figure 5: A spatial domain formed from congruent triangles, showing the spatial projections
of the mesh points.
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Figure 6: (a) The CEs associated with G0. (b) the CEs associated with C 00. (c) The relative
positions of the CEs of successive time steps.

B, C, D, E and F , respectively.

Point G0 is a mesh point at a half-integer time level. For a mesh point at a whole-
integer time-level, the conservation elements associated with it can be constructed in a
similar fashion. As an example, consider Fig. 6(b). Here points B0 (B00), I 0 (I 00), J 0 (J 00),
K 0 (K 00), D0 (D00), G0 (G00) and C 0 (C 00) are on the time level n = 1=2 (n = 1) with their
spatial projections on the time level n = 0, respectively, being the points B, I, J , K, D, G
and C that are depicted in Fig. 5. Point C 00 is a mesh point at the time level n = 1. By
de�nition, the conservation elements associated with point C 00 are the quadrilateral cylinders
C 0J 0K 0D0C 00J 00K 00D00, C 0D0G0B0C 00D00G00B00 and C 0B0I 0J 0C 00B00I 00J 00. The relative space-time
positions of the six CEs associated with mesh points G0 and C 00 are depicted in Fig. 6(c).

Recall that, in the development of the 1D a scheme, a pair of diagonally opposite vertices
of each CE�(j; n) (see Figs. 4(d) and 4(e)) are assigned as mesh points. Furthermore, the
boundary of each CE�(j; n) is a subset of the union of the SEs associated with the two
diagonally opposite mesh points of this CE. In the 2D development, as seen from Figs. 6(a){
(c), two diagonally opposite vertices of each CE are also assigned as mesh points. In Sec. 4,
we shall de�ne the SEs such that even in the 2D case, the boundary of a CE is again a subset
of the union of the SEs associated with the two diagonally opposite mesh points of this CE.

As a preliminary to the derivation of several equations to be given in Sec. 4, this section is
concluded with a discussion of several geometric relations involving point G and the vertices
of the hexagon ABCDEF that are depicted in Fig. 5. By using the facts that (i) points
A, C, E and G are the geometric centers of four neighboring congruent triangles 4FMB,
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4BJD,4DLF and4BDF , respectively; and (ii) any two of the above four triangles form a
parallelogram (note: two congruent triangles sharing one side may not form a parallelogram),
it can be shown that:

(a) CD, GE, BG and AF are parallel line segments of equal length.

(b) AB, GC, FG and ED are parallel line segments of equal length.

(c) BC, GD, AG and FE are parallel line segments of equal length.

(d) Point G is the geometric center of the hexagon ABCDEF and the triangle ACE.

Note that the line segments GA, GC, GE AC, CE and EA are not shown in Fig. 5. Also
note that, because the hexagon BIJKDG (depicted in Fig. 5) is congruent to the hexagon
ABCDEF , a set of geometric relations similar to those listed above also exists for the
vertices and the center of the hexagon BIJKDG.
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4. The 2D a Scheme

In this section, we consider a dimensionless form of the 2D convection equation, i.e.,

@u

@t
+ ax

@u

@x
+ ay

@u

@y
= 0 (4:1)

where ax, and ay are constants. Let x1 = x, x2 = y, and x3 = t be the coordinates of a three-
dimensional Euclidean space E3. By using Gauss' divergence theorem in the space-time E3,
it can be shown that Eq. (4.1) is the di�erential form of the integral conservation lawI

S(V )

~h � d~s = 0 (4:2)

Here (i) S(V ) is the boundary of an arbitrary space-time region V in E3, (ii)

~h
def
= (axu; ayu; u) (4:3)

is a current density vector in E3, and (iii) d~s = d� ~n with d� and ~n, respectively, being the
area and the outward unit normal of a surface element on S(V ). It was shown in Sec. 3,
that E3 can be divided into nonoverlapping space-time regions referred to as conservation
elements (CEs).

In the following analysis, the nontraditional space-time mesh that was sketched in Sec. 3
will be rigorously de�ned. To proceed, the spatial projections of the mesh points depicted
in Fig. 5 are reproduced in Fig. 7. Note that the dashed lines that appear in Fig. 7 are the
spatial projections of the vertical interfaces (see Fig. 6(a)-(c)) that separate di�erent CEs.
Also note that, as a result of the geometric relations listed at the end of Sec. 3, any dashed
line can point only in one of three di�erent �xed directions. We assume that the congruent
triangles depicted in Fig. 5 are aligned such that one of the above �xed directions is the
x-direction.

Each mesh point marked by a solid or hollow circle is assigned a pair of spatial indices
(j; k) according to the location of its spatial projection. Obviously, a mesh point can be
uniquely identi�ed by its spatial indices (j; k) and the time level n where it resides. According
to Figs. 8 and 9, the spatial projections of the mesh points that share the same value of j
(k) lie on a straight line on the x-y plane with this straight line pointing in the direction of
the k- (j-) mesh axis.

Let
tn

def
= n�t; n = 0; �1=2; �1; �3=2; : : : (4:4)

Let j and k be spatial mesh indices with j; k = 0; �1=3; �2=3; �1; : : :. Let 
1 denote the
set of mesh points (j; k; n) with j; k = 0;�1;�2; : : :, and n = �1=2; �3=2; �5=2; : : :. These
mesh points are marked by solid circles. Let 
2 denote the set of mesh points (j; k; n) with
j; k = 1=3; 1=3 � 1; 1=3 � 2; : : :, and n = 0;�1;�2; : : :. These mesh points are marked by
hollow circles. The union of 
1 and 
2 will be denoted by 
. Note that the same symbol 

was also used to denote the set of mesh points used in the 1D solvers (see Sec.2). Hereafter,
unless speci�ed otherwise, the new de�nition of 
 is assumed.
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Figure 7: The relative spatial positions of the mesh points 2 
1 and the mesh points 2 
2

(dash lines are spatial boundaries of the conservation elements depicted in �gs 10(a) and
11(a)).

Figure 8: The spatial mesh indices (j,k) of the mesh points 2 
1

(n = �1=2; �3=2; �5=2; : : :).
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Figure 9: The spatial mesh indices (j,k) of the mesh points 2 
2 (n = 0; �1; �2; : : :).
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Each mesh point (j; k; n) 2 
 is associated with (i) three conservation elements (CEs),
denoted by CEr(j; k; n), r = 1; 2; 3 (see Figs. 10(a) and 11(a)); and (ii) a solution element
(SE), denoted by SE(j; k; n) (see Figs. 10(b) and 11(b)). Each CE is a quadrilateral cylinder
in space-time while each SE is the union of three vertical planes, a horizontal plane, and
their immediate neighborhoods. Note that the CEs and the SE associated with a mesh point
(j; k; n) 2 
1 di�er from those associated with a mesh point (j; k; n) 2 
2 in their space-time
orientations.

By using the geometric relations listed at the end of Sec. 3, one can conclude that
the spatial coordinates of the vertices of the hexagon ABCDEF , which appears in both
Figs. 10(a) and 11(a), are uniquely determined by three positive parameters w, b and h (see
Fig. 12(a)) if (i) one assumes that DA is aligned with the x-direction, and (ii) the spatial
coordinates of point G (the centroid of the hexagon) are given. Note that w, b and h,
respectively, are the lengths of the line segments DM , MH and BH with (i) DM being a
median of the triangle 4BDF , and (ii) points G, M and H being on the line segment DA.
Also note that a dashed line in Fig. 7 may appear in other �gures as a solid line.

According to Fig. 7, E3 can be �lled with the CEs de�ned above. Moreover, it is seen
from Figs. 10(a), 10(b), 11(a), and 11(b) that the boundary of a CE is formed by the subsets
of two neighboring SEs.

Let the space-time mesh be uniform, i.e., the parameters �t, w, b, and h are constants.
Let xj;k and yj;k be the x- and y- coordinates of any mesh points (j; k; n) 2 
. Let x0;0 = 0
and y0;0 = 0. Then information provided by Figs. 12(a) and 12(b) implies that

xj;k = (j + k)w + (k � j)b; yj;k = (k � j)h (4:5)

Let ~n1, ~n2, ~n3, ~n4, ~n5, and ~n6 be the vectors depicted in Fig. 12(a). They lie on the x-y plane
and are the outward unit normals to AB, BC, CD, DE, EF , and FA, respectively. It can
be shown that

~n1 =
(h;�b+ w=3; 0)q
h2 + (b� w=3)2

; ~n4 = �~n1 (4:6a)

~n2 = (0; 1; 0); ~n5 = �~n2 (4:6b)

and

~n3 =
(�h; b+ w=3; 0)q
h2 + (b+ w=3)2

; ~n6 = �~n3 (4:6c)

For any (x; y; t) 2 SE(j; k; n), u(x; y; t) and ~h(x; y; t), respectively, are approximated by

u�(x; y; t; j; k; n)
def
= unj;k + (ux)

n
j;k(x� xj;k) + (uy)

n
j;k(y � yj;k) + (ut)

n
j;k(t� tn) (4:7)

and

~h�(x; y; t; j; k; n)
def
= [axu

�(x; y; t; j; k; n); ayu
�(x; y; t; j; k; n); u�(x; y; t; j; k; n)] (4:8)
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Figure 10: (a) Conservation elements CEr(j; k; n), r = 1; 2; 3 for any (j; k; n) 2 
1.
(b) Solution element SE(j; k; n) for any (j; k; n) 2 
1.
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Figure 11: (a) Conservation elements CEr(j; k; n), r = 1; 2; 3 for any (j; k; n) 2 
2.
(b) Solution element SE(j; k; n) for any (j; k; n) 2 
2.
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Figure 12: Geometry of the hexagon ABCDEF. (a) Relative positions of the vertices in terms
of (x,y). (b) Relative positions of the vertices in terms of (j,k). (c) Relative positions of the
vertices in terms of (�; �).
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where unj;k, (ux)
n
j;k, (uy)

n
j;k, and (ut)nj;k are constants within SE(j; k; n). The last four coe�-

cients, respectively, can be considered as the numerical analogues of the values of u, @u=@x,
@u=@y, and @u=@t at (xj;k; yj;k; tn). As a result, the expression on the right side of Eq. (4.7)
can be considered as the �rst-order Taylor's expansion of u(x; y; t) at (xj;k; yj;k; tn). Also
note that Eq. (4.8) is the numerical analogue of Eq. (4.3).

We shall require that u = u�(x; y; t; j; k; n) satisfy Eq. (4.1) within SE(j; k; n). As a
result,

(ut)
n
j;k = �

h
ax(ux)

n
j;k + ay(uy)

n
j;k

i
(4:9)

Substituting Eq. (4.9) into Eq. (4.7), one has

u�(x; y; t; j; k; n) = unj;k + (ux)
n
j;k [(x� xj;k)� ax(t� tn)]

+ (uy)
n
j;k [(y � yj;k)� ay(t� tn)] : (4.10)

Thus there are three independent marching variables, i.e., unj;k, (ux)
n
j;k, and (uy)

n
j;k associated

with a mesh point (j; k; n) 2 
. For any (j; k; n) 2 
1, these variables will be determined in
terms of those associated with the mesh points (j+1=3; k+1=3; n�1=2), (j�2=3; k+1=3; n�
1=2), and (j + 1=3; k � 2=3; n � 1=2) (see Fig. 13(a)) by using the three ux conservation
relations I

S(CEr(j;k;n))

~h� � d~s = 0; r = 1; 2; 3 (4:11)

Similarly, the marching variables at any (j; k; n) 2 
2 are determined in terms of those
associated with the mesh points (j � 1=3; k � 1=3; n� 1=2), (j + 2=3; k � 1=3; n � 1=2), and
(j � 1=3; k + 2=3; n � 1=2) (see Fig. 13(b)) by using the three ux conservation relations
Eq. (4.11). Obviously, Eq. (4.11) is the numerical analogue of Eq. (4.2).

As a result of Eq. (4.11), the total ux leaving the boundary of any CE is zero. Because
the ux at any interface separating two neighboring CEs is calculated using the information
from a single SE, the ux entering one of these CEs is equal to that leaving another. It
follows that the local conservation conditions Eq. (4.11) will lead to a global conservation
condition, i.e., the total ux leaving the boundary of any space-time region that is the union
of any combination of CEs will also vanish.

In the following, several preliminaries will be given prior to the evaluation of Eq. (4.11).
To proceed, note that a mesh line with j and n being constant or a mesh line with k and n
being constant is not aligned with the x-axis or the y-axis. We shall introduce a new spatial
coordinate system (�; �) with its axes aligned with the above mesh lines (see Fig. 12(c)).

Let ~ex and ~ey be the unit vectors in the x- and the y- directions, respectively. Let ~e� and

~e� be the unit vectors in the directions of
�!
DF and

�!
DB (i.e., the j- and the k- directions{see

Figs. 12(a)-(c)), respectively. It can be shown that

~e� = [(w � b)~ex � h~ey] =�� (4:12)

and
~e� = [(w + b)~ex + h~ey] =�� (4:13)
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Figure 13: (a) The mesh points (j; k; n), (j + 1=3; k + 1=3; n � 1=2), (j � 2=3; k + 1=3; n �
1=2), and (j + 1=3; k � 2=3; n � 1=2) that belongs to 2 
1. (b) The mesh points (j; k; n),
(j � 1=3; k � 1=3; n � 1=2), (j + 2=3; k � 1=3; n � 1=2), and (j � 1=3; k + 2=3; n � 1=2) that
belongs to 2 
2.
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where
��

def
= jDF j =

q
(w � b)2 + h2 (4:14)

and
��

def
= jDBj =

q
(w + b)2 + h2 (4:15)

Let the origin of (x; y) also be that of (�; �). Then, at any point in E3, the coordinates (�; �)
are de�ned in terms of (x; y) using the relation

� ~e� + � ~e� = x~ex + y ~ey (4:16)

Substituting Eqs. (4.12) and (4.13) into Eq. (4.16), one has

�
x
y

�
= T

�
�
�

�
(4:17)

and �
�
�

�
= T�1

�
x
y

�
(4:18)

Here

T
def
=

0
BBBBB@

w � b

��

w + b

��

� h

��

h

��

1
CCCCCA (4:19)

and

T�1 def
=

0
BBBBB@

��

2w
�(w + b)��

2wh

��

2w

(w � b)��

2wh

1
CCCCCA (4:20)

Note that the existence of T�1, the inverse of T , is assured if wh 6= 0.

With the aid of Eqs. (4.5), (4.18), and (4.20), it can be shown that the coordinates (�; �)
of any mesh point (j; k; n) 2 
 are given by

� = j ��; and � = k �� (4:21)

i.e., �� and �� are the mesh intervals in the �- and the �- directions, respectively.

Next we shall introduce several coe�cients that are tied to the coordinate system (�; �).
Let �

a�
a�

�
def
= T�1

�
ax
ay

�
(4:22)
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Also, for any (j; k; n) 2 
, let

0
B@ (u�)nj;k

(u�)nj;k

1
CA def

= T t

0
B@ (ux)nj;k

(uy)nj;k

1
CA (4:23)

where T t is the transpose of T . For those who are familiar with tensor analysis [55], the
following comments will clarify the meaning of the above de�nitions:

(a) (a�; a�) are the contravariant components with respect to the coordinates (�; �) for the
spatial vector whose x- and y- components are ax and ay, respectively.

(b) ((u�)nj;k; (u�)
n
j;k) are the covariant components with respect to the coordinates (�; �) for

the spatial vector whose x- and y- components are (ux)nj;k and (uy)nj;k, respectively.

(c) Because the contraction of the contravariant components of a vector and the covariant
components of another is a scalar, Eq. (4.9) can be rewritten as

(ut)
n
j;k = �

h
a�(u�)

n
j;k + a�(u�)

n
j;k

i
(4:24)

(d) Under the linear coordinate transformation de�ned by Eqs. (4.17) and (4.18), (� �
j��; � � k��) are the contravariant components with respect to the coordinates (�; �)
for the spatial vector whose x- and y- components are x�xj;k and y�yj;k, respectively.
Using the same reason given in (c), Eq. (4.10) implies that

u�(x; y; t; j; k; n) = u?(�; �; t; j; k; n) (4:25)

where

u?(�; �; t; j; k; n)
def
= unj;k + (u�)

n
j;k [(� � j��)� a�(t� tn)]

+ (u�)
n
j;k [(� � k��)� a�(t� tn)] (4.26)

Note that Eqs. (4.24) and (4.25) can also be veri�ed directly using Eqs. (4.18), (4.20),
(4.22), and (4.23).

Next, let (i)

��
def
=

3�t

2��
a�; and ��

def
=

3�t

2��
a� (4:27)

and (ii)

(u+� )
n
j;k

def
=

��

6
(u�)

n
j;k; and (u+� )

n
j;k

def
=

��

6
(u�)

n
j;k (4:28)

The coe�cients de�ned in Eqs. (4.27) and (4.28) can be considered as the normalized coun-
terparts of those de�ned in Eqs. (4.22) and (4.23). Furthermore, because �� and �� are
the mesh intervals in the �- and �- directions, respectively, Eq. (4.27) implies that (2=3)��
and (2=3)�� , respectively, are equal to the Courant numbers in the �- and �- directions,
respectively.
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Furthermore, let

�
(1)�
11

def
= 1� �� � �� (4:29)

�
(1)�
12

def
= �(1 � �� � ��)(1 + ��) (4:30)

�
(1)�
13

def
= �(1� �� � ��)(1 + ��) (4:31)

�
(1)�
21

def
= 1 + �� (4:32)

�
(1)�
22

def
= �(1 + ��)(2 � ��) (4:33)

�
(1)�
23

def
= �(1 + ��)(1 + ��) (4:34)

�
(1)�
31

def
= 1 + �� (4:35)

�
(1)�
32

def
= �(1 + ��)(1 + ��) (4:36)

�
(1)�
33

def
= �(1 + ��)(2 � ��) (4:37)

�
(2)�
11

def
= 1 + �� + �� (4:38)

�
(2)�
12

def
= �(1 + �� + ��)(1� ��) (4:39)

�
(2)�
13

def
= �(1 + �� + ��)(1 � ��) (4:40)

�
(2)�
21

def
= 1� �� (4:41)

�
(2)�
22

def
= �(1� ��)(2 + ��) (4:42)

�
(2)�
23

def
= �(1 � ��)(1 � ��) (4:43)

�
(2)�
31

def
= 1 � �� (4:44)

�
(2)�
32

def
= �(1 � ��)(1 � ��) (4:45)

and
�
(2)�
33

def
= �(1� ��)(2 + ��) (4:46)

Note that:

(a) Each of Eqs. (4.29){(4.46) represents two equations. One corresponds to the upper signs
while the other, to the lower signs.

(b) The de�nitions given in Eqs. (4.29){(4.37) will be used in the �rst marching step of
the 2D a scheme; while those given in Eqs. (4.38){(4.46) will be used in the second
marching step. It is seen that the expressions on the right sides of the former can
be converted to those of the latter, respectively, by reversing the \+" and \�" signs.
Moreover, for every pair of r and s (r; s = 1; 2; 3), �(1)�rs and �(2)�rs are converted to
�(2)+rs and �(1)+rs , respectively, if ��, and �� are replaced by ���, and ���, respectively.
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(c) We have

�
(q)�
11 + �

(q)�
21 + �

(q)�
31 = 3; q = 1; 2 (4:47)

and

�
(q)�
12 + �

(q)�
22 + �

(q)�
32

= �
(q)�
13 + �

(q)�
23 + �

(q)�
33 = 0; q = 1; 2 (4.48)

To simplify the following development, let

(j; k; 1; 1)
def
= j + 1=3; k + 1=3 (4:49a)

(j; k; 1; 2)
def
= j � 2=3; k + 1=3 (4:49b)

(j; k; 1; 3)
def
= j + 1=3; k � 2=3 (4:49c)

(j; k; 2; 1)
def
= j � 1=3; k � 1=3 (4:50a)

(j; k; 2; 2)
def
= j + 2=3; k � 1=3 (4:50b)

(j; k; 2; 3)
def
= j � 1=3; k + 2=3 (4:50c)

Note that (i) (j; k; 1; r), r = 1; 2; 3, are the spatial mesh indices of points A, C, and E
depicted in Fig. 10(a), respectively, (ii) (j; k; 2; r), r = 1; 2; 3, are the spatial mesh indices
of points D, F , and B depicted in Fig. 11(a), respectively, and (iii) the mesh indices on the
right sides of Eqs. (4.49a,b,c) can be converted to those in Eqs. (4.50a,b,c), respectively, by
reversing the \+" and \�" signs.

Equation (4.11) is evaluated in Appendix B. Let (j; k; n) 2 
q with q = 1; 2. Then, for
any r = 1; 2; 3, the result of evaluation can be expressed as:

h
�
(q)+
r1 u+ �

(q)+
r2 u+� + �

(q)+
r3 u+�

in
j;k

=
h
�
(q)�
r1 u+ �

(q)�
r2 u+� + �

(q)�
r3 u+�

in�1=2
(j;k;q;r)

(4:51)

According to Eqs. (4.29){(4.31), �(1)�11 , �(1)�12 , and �(1)�13 contain a common factor (1����
��). Similarly, each of three consecutive pairs of coe�cients de�ned in Eqs. (4.32){(4.46) also
contain a common factor. As a result, if one assumes that (i) 1� ��� �� 6= 0, (ii) 1+ �� 6= 0,
(iii) 1 + �� 6= 0, (iv) 1 + �� + �� 6= 0, (v) 1� �� 6= 0 and (vi) 1� �� 6= 0, i.e.,

h
1� (�� + ��)

2
i �
1� �2�

� �
1� �2�

�
6= 0 (4:52)

then the six equations (q = 1; 2 and r = 1; 2; 3) given in Eq. (4.51) can be simpli�ed as

h
u+ (1 + ��)u

+
� + (1 + ��)u

+
�

in
j;k

= s
(1)
1 ; (j; k; n) 2 
1 (4:53)

h
u� (2 � ��)u

+
� + (1 + ��)u

+
�

in
j;k

= s
(1)
2 ; (j; k; n) 2 
1 (4:54)
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h
u+ (1 + ��)u

+
� � (2 � ��)u

+
�

in
j;k

= s
(1)
3 ; (j; k; n) 2 
1 (4:55)

h
u� (1� ��)u

+
� � (1� ��)u

+
�

in
j;k

= s
(2)
1 ; (j; k; n) 2 
2 (4:56)

h
u+ (2 + ��)u

+
� � (1 � ��)u

+
�

in
j;k

= s
(2)
2 ; (j; k; n) 2 
2 (4:57)

and h
u� (1 � ��)u

+
� + (2 + ��)u

+
�

in
j;k

= s
(2)
3 ; (j; k; n) 2 
2 (4:58)

respectively. Here

s
(1)
1

def
=
h
u� (1 + ��)u

+
� � (1 + ��)u

+
�

in�1=2
(j;k;1;1)

; (j; k; n) 2 
1 (4:59)

s
(1)
2

def
=
h
u+ (2� ��)u

+
� � (1 + ��)u

+
�

in�1=2
(j;k;1;2)

; (j; k; n) 2 
1 (4:60)

s
(1)
3

def
=
h
u� (1 + ��)u

+
� + (2 � ��)u

+
�

in�1=2
(j;k;1;3)

; (j; k; n) 2 
1 (4:61)

s
(2)
1

def
=
h
u+ (1� ��)u

+
� + (1 � ��)u

+
�

in�1=2
(j;k;2;1)

; (j; k; n) 2 
2 (4:62)

s
(2)
2

def
=
h
u� (2 + ��)u

+
� + (1 � ��)u

+
�

in�1=2
(j;k;2;2)

; (j; k; n) 2 
2 (4:63)

and

s
(2)
3

def
=
h
u+ (1� ��)u

+
� � (2 + ��)u

+
�

in�1=2
(j;k;2;3)

; (j; k; n) 2 
2 (4:64)

The current 2D a scheme will be constructed using Eqs. (4.53){(4.58) without assuming
Eq. (4.52). Note that Eqs. (4.53){(4.58) imply Eq. (4.51) for any �� and ��. However, the
reverse is false unless Eq. (4.52) is assumed.

Note that the expressions within the brackets in Eqs. (4.53){(4.55) and (4.59){(4.61),
respectively, can be converted to those in Eqs. (4.56){(4.58) and (4.62){(4.64) by reversing
the \+" and \�" signs.

It can be shown that Eqs. (4.53){(4.55) are equivalent to

unj;k =
1

3

h
(1� �� � ��)s

(1)
1 + (1 + ��)s

(1)
2 + (1 + ��)s

(1)
3

i
(4:65)

(u+� )
n
j;k = (ua+� )nj;k

def
=

1

3

�
s
(1)
1 � s

(1)
2

�
(4:66)

and

(u+� )
n
j;k = (ua+� )nj;k

def
=

1

3

�
s
(1)
1 � s

(1)
3

�
(4:67)

where (j; k; n) 2 
1. Also Eqs. (4.56){(4.58) are equivalent to

unj;k =
1

3

h
(1 + �� + ��)s

(2)
1 + (1� ��)s

(2)
2 + (1� ��)s

(2)
3

i
(4:68)
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(u+� )
n
j;k = (ua+� )nj;k

def
=

1

3

�
s
(2)
2 � s

(2)
1

�
(4:69)

and

(u+� )
n
j;k = (ua+� )nj;k

def
=

1

3

�
s
(2)
3 � s

(2)
1

�
(4:70)

where (j; k; n) 2 
2.

At this juncture, it should be emphasized that Eqs. (4.65) and (4.68) can be derived
directly from Eq. (4.51). As a matter of fact, with the aid of Eqs. (4.47) and (4.48), we can
obtain Eq. (4.65) (Eq. (4.68)) by summing over the three equations with q = 1 (q = 2) and
r = 1; 2; 3 in Eq. (4.51).

The 2D a scheme is formed by repeatedly applying the two marching steps de�ned by
Eqs. (4.65){(4.67) and Eqs. (4.68){(4.70), respectively. It has been shown numerically that
it is of second order in accuracy for unj;k, (u�)

n
j;k and (u�)

n
j;k assuming that �� and �� are

held constant in the process of mesh re�nement (note: as a result of Eq. (4.28), the 2D a
scheme is third order accurate for (u+� )

n
j;k and (u+� )

n
j;k). Note that the superscript symbol \a"

in (ua+� )nj;k and (ua+� )nj;k is introduced to remind the reader that Eqs. (4.66), (4.67), (4.69)
and (4.70) are valid for the 2D a scheme. Although the 2D a scheme is constructed using a
procedure very much parallel to that used to construct the 1D a scheme, the former is more
complex than the latter in many aspects. One key di�erence between these two schemes
is that the 2D a scheme is formed by two distinctly di�erent marching steps while the 1D
a scheme is formed by repeatedly applying the same marching step de�ned by the inviscid
version of Eq. (2.14) in [2]. It is this di�erence that, in the 2D case, makes it necessary to
divide the mesh points into two sets 
1 and 
2.

As a preliminary for the stability analysis of the 2D a scheme given in Sec. 6, for any
(j; k; n) 2 
, let

~q (j; k; n)
def
=

0
BBBBB@

u

u+�

u+�

1
CCCCCA

n

j;k

(4:71)

Furthermore, let the six 3 � 3 matrices Q(q)
r , q = 1; 2, and r = 1; 2; 3, respectively, be the

special cases of those de�ned in Eqs. (5.18){(5.23) (see Sec. 5) with � = 0. Then Eqs. (4.65){
(4.70) can be expressed as

~q (j; k; n) =
3X

r=1

Q(q)
r ~q((j; k; q; r); n� 1=2); (j; k; n) 2 
q (4:72)

Combining Eqs. (4.72) and (4.49a){(4.50c), one has (i)

~q (j; k; n) = Q
(1)
1 Q

(2)
2 ~q (j + 1; k; n� 1) +Q

(1)
1 Q

(2)
3 ~q (j; k + 1; n� 1)

+ Q
(1)
2 Q

(2)
1 ~q (j � 1; k; n� 1) +Q

(1)
2 Q

(2)
3 ~q (j � 1; k + 1; n� 1)
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+ Q
(1)
3 Q

(2)
1 ~q (j; k � 1; n� 1) +Q

(1)
3 Q

(2)
2 ~q (j + 1; k � 1; n� 1)

+ (Q(1)
1 Q

(2)
1 +Q

(1)
2 Q

(2)
2 +Q

(1)
3 Q

(2)
3 ) ~q (j; k; n � 1) (4.73)

where (j; k; n) 2 
1; and (ii)

~q (j; k; n) = Q
(2)
1 Q

(1)
2 ~q (j � 1; k; n� 1) +Q

(2)
1 Q

(1)
3 ~q (j; k � 1; n� 1)

+ Q
(2)
2 Q

(1)
1 ~q (j + 1; k; n � 1) +Q

(2)
2 Q

(1)
3 ~q (j + 1; k � 1; n � 1)

+ Q
(2)
3 Q

(1)
1 ~q (j; k + 1; n � 1) +Q

(2)
3 Q

(1)
2 ~q (j � 1; k + 1; n� 1)

+ (Q
(2)
1 Q

(1)
1 +Q

(2)
2 Q

(1)
2 +Q

(2)
3 Q

(1)
3 ) ~q (j; k; n� 1) (4.74)

where (j; k; n) 2 
2. Note that (i) Eq. (4.73) relates the marching variables at two adjacent
half-integer time levels; and (ii) Eq. (4.74) relates the marching variables at two adjacent
whole-integer time levels.

The 2D a scheme has several nontraditional features. They are summarized in the fol-
lowing comments:

(a) As in the case of the 1D a scheme, the 2D a scheme also has the simplest stencil possible,
i.e., in each of their two marching steps, the stencil is a tetrahedron in 3D space-time
with one vertex at the upper time level and the other three vertices at the lower time
level.

(b) As in the case of the 1D a scheme, each of the six ux conservation conditions associated
with the 2D a scheme., i.e., those given in Eq. (4.51) (q = 1; 2 and r = 1; 2; 3), represents
a relation among the marching variables associated with only two neighboring SEs.

(c) As in the case of the 1D a scheme, the 2D a scheme also is non-dissipative if it is stable.
It is shown in Sec. 7 that the 2D a scheme is neutrally stable if

j��j < 1:5; j��j < 1:5; and j�� + ��j < 1:5 (4:75)

As depicted in Fig. 14, the domain of stability de�ned by Eq. (4.75) is a hexagonal
region in the ��-�� plane. Moreover, it will also be shown later that Eq. (4.75) can
be interpreted as the requirement that the physical domain of dependence of Eq. (4.1)
be within the numerical domain of dependence. Note that the points on the ��-��
plane that violate Eq. (4.52) form the boundary of a hexagonal region which is entirely
within the stability domain de�ned in Eq. (4.75). As was emphasized earlier, the 2D
a scheme applies even at these points.

(d) It is shown in [9] that the 2D a scheme has the following property, i.e., for any (j; k; n) 2

,

~q (j; k; n+ 1)! ~q (j; k; n) as �t! 0 (4:76)

if ax, ay, w, b, and h are held constant. The 1D a scheme also possesses a similar
property, i.e., Eq. (2.19) in [2]. The above property usually is not shared by other
schemes that use a mesh that is staggered in time, e.g., the Lax scheme [52].
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Figure 14: The stability domain of the 2D a-scheme.

(e) As in the case of the 1D a scheme, the 2D a scheme is also a two-way marching scheme.
In other words, Eqs. (4.53){(4.58) can also be used to construct the backward time-
marching version of the 2D a scheme. More discussions on this subject are given in
[9].

This section is concluded with the following remarks:

(a) the 2D a scheme is only a special case of the 2D a-� scheme described in [9]. It is a
solver for the 2D convection-di�usion equation

@u

@t
+ ax

@u

@x
+ ay

@u

@y
� �

 
@2u

@x2
+
@2u

@y2

!
= 0 (4:77)

where ax, ay, and � (� 0) are constants. Note that this solver, as in the case of its 1D
counterpart, is unconditionally stable if ax = ay = 0.

(b) It should be emphasized that, with the aid of Eqs. (4.17){(4.20), (4.22), and (4.23),
the 2D a scheme can also be expressed in terms of the marching variables and the
coe�cients tied to the coordinates (x; y). In other words, the coordinates (�; �) are
introduced solely for the purpose of simplifying the current development. The essence
of the 2D a scheme, and the schemes to be introduced in the following sections, is
not dependent on the choice of the coordinates in terms of which these schemes are
expressed.
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5. The 2D a-� and a-�-�-� Schemes

The 2D a scheme is non-dissipative and reversible in time. It is well known that a non-
dissipative numerical analogue of Eq. (4.1) generally becomes unstable or highly dispersive
when it is extended to model the 2D unsteady Euler equations. It is also obvious that a
scheme that is reversible in time cannot model a physical problem that is irreversible in
time, e.g., an inviscid ow problem involving shocks. As a result, the 2D a scheme will
be extended to become the dissipative 2D a-� and a-�-�-� scheme before it is extended to
model the Euler equations. As will be shown, the 2D extensions are carried out in a fashion
completely parallel to their 1D counterparts.

5.1. The 2D a-� Scheme

To proceed, note that the CEs for the 2D a-� scheme generally are not those associated
with the 2D a scheme. Here only a single CE is associated with a mesh point (j; k; n) 2 
.
This CE, denoted by CE(j; k; n), is the union of CEr(j; k; n), r = 1; 2; 3. In other words,

CE(j; k; n)
def
= [CE1(j; k; n)] [ [CE2(j; k; n)] [ [CE3(j; k; n)] (5:1)

Instead of Eq. (4.11), here we assume the less stringent conservation condition

I
S(CE(j;k;n))

~h� � d~s = 0 (5:2)

Obviously, (i) E3 can be �lled with the new CEs, and (ii) the total ux leaving the boundary
of any space-time region that is the union of any new CEs will also vanish.

Moreover, because of Eq. (5.1), Eq. (5.2) must be true if Eq. (4.11) is assumed. As a
matter of fact, a direct evaluation of Eq. (5.2) reveals that it is equivalent to Eq. (4.65)
(Eq. (4.68)) if (j; k; n) 2 
1 ((j; k; n) 2 
2). As a result, Eqs. (4.65) and (4.68) are shared by
the 2D a scheme and 2D a-� scheme. Recall that Eq. (2.7) is also shared by the 1D a and a-�
schemes. In this section, using a procedure similar to that which was used to extend the 1D
a scheme to become the 1D a-� scheme, the two marching steps that form the 2D a-� scheme
will be constructed by modifying the other equations in the 2D a scheme, i.e., Eqs. (4.66),
(4.67), (4.69), and (4.70). As a prerequisite, �rst we shall provide a geometric interpretation
of the procedure by which the second equation of the 1D a scheme, i.e., Eq. (2.8), was
extended to become the second equation of the 1D a-� scheme, i.e., Eq. (2.13).

The key step in extending the 1D a scheme to the 1D a-� scheme is the construction of
a central di�erence approximation of @u=@x at the mesh point (j; n). The approximation is
given as the fraction within the parentheses on the extreme right side of Eq. (2.12). Consider
a line segment in the x-u space joining the two points (xj�1=2; u

0n
j�1=2) and (xj+1=2; u

0n
j+1=2). It

is obvious that the above central-di�erence approximation is the value of the slope du=dx of
this line segment. In the following modi�cation, instead of considering a line segment in the
x-u space joining two points, we begin with the construction of a plane in the �-�-u space
that intersects three given points.
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To proceed, for any (j; k; n) 2 
q, q = 1; 2, let

u0n(j;k;q;r)
def
=
�
u+

�t

2
ut

�n�1=2
(j;k;q;r)

; r = 1; 2; 3 (5:3)

By its de�nition, u0n(j;k;q;r) is a �nite-di�erence approximation of u at ((j; k; q; r); n). With the
aid of Eqs. (4.24), (4.27) and (4.28), Eq. (5.3) implies that

u0n(j;k;q;r) =
h
u� 2

�
��u

+
� + ��u

+
�

�in�1=2
(j;k;q;r)

(5:4)

For both the case q = 1 (see Fig. 15(a)) and the case q = 2 (see Fig. 15(b)), let P , Q,
and R be the three points in the �-�-u space with their (i) �- and �-coordinates being those
of the mesh points ((j; k; q; r); n� 1=2), r = 1; 2; 3, respectively, and (ii) their u-coordinates
being u0n(j;k;q;r), r = 1; 2; 3, respectively. It can be shown that the plane in the �-�-u space
that intersects the above three points is represented by

u = (uc�)
n
j;k(� � j��) + (uc�)

n
j;k(� � k��) + (uc)nj;k (5:5)

where

(uc)nj;k
def
=

1

3

3X
r=1

u0n(j;k;q;r) (5:6)

(uc�)
n
j;k

def
= (�1)q

�
u0n(j;k;q;2) � u0n(j;k;q;1)

�
=�� (5:7)

and
(uc�)

n
j;k

def
= (�1)q

�
u0n(j;k;q;3) � u0n(j;k;q;1)

�
=�� (5:8)

The coordinates of the points O and Oc depicted in both Fig. 15(a) and Fig. 15(b) are
(j��; k��; unj;k) and (j��; k��; (u

c)nj;k), respectively. Here u
n
j;k is evaluated using (i) Eq. (4.65)

if q = 1 and (ii) Eq. (4.68) if q = 2. Equation (5.5) implies that point Oc is on the same
plane that contains points P , Q, and R. Because generally unj;k 6= (uc)nj;k, points O, P , Q and
R generally are not on the same plane. Moreover, for every point on the plane represented
by Eq. (5.5),  

@u

@�

!
�

= (uc�)
n
j;k; and

 
@u

@�

!
�

= (uc�)
n
j;k (5:9)

As a result of the above considerations, and the fact that the spatial projection of the mesh
point (j; k; n) 2 
q on the (n� 1=2)th time level is the centroid of the triangle formed with
the mesh points ((j; k; q; r); n � 1=2), r = 1; 2; 3, one concludes that (uc)nj;k, (u

c
�)

n
j;k, and

(uc�)
n
j;k are central-di�erence approximations of u, @u=@�, and @u=@�, respectively, at the

mesh point (j; k; n).

To proceed, for any (j; k; n) 2 
, let

(uc+� )nj;k
def
=

��

6
(uc�)

n
j;k and (uc+� )nj;k

def
=

��

6
(uc�)

n
j;k (5:10)
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Figure 15: Construction of the 2D a-� and a-�-�-� schemes. (a) (j; k; n) 2 
1. (b) (j; k; n)
2 
2.
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Then the 2D a-� scheme can be de�ned as follows: For any (j; k; n) 2 
1, we assume
Eq. (4.65) and

(u+� )
n
j;k = (ua+� )nj;k + 2�

�
uc+� � ua+�

�n
j;k

(5:11)

and
(u+� )

n
j;k = (ua+� )nj;k + 2�

�
uc+� � ua+�

�n
j;k

(5:12)

with the understanding that (ua+� )nj;k and (u
a+
� )nj;k are those de�ned in Eqs. (4.66) and (4.67).

On the other hand, for any (j; k; n) 2 
2, we assume Eqs. (4.68), (5.11) and (5.12) with the
understanding that (ua+� )nj;k and (ua+� )nj;k are those de�ned in Eqs. (4.69) and (4.70).

With the aid of Eqs. (5.4), (5.7), (5.8), (5.10), (4.66), (4.67), (4.69) and (4.70), it can be
shown that (i)

(uc+� � ua+� )nj;k =
1

6

��
u+ 4u+� � 2u+�

�n�1=2
(j;k;1;2)

�
�
u� 2u+� � 2u+�

�n�1=2
(j;k;1;1)

�
(5:13)

and

(uc+� � ua+� )nj;k =
1

6

��
u� 2u+� + 4u+�

�n�1=2
(j;k;1;3)

�
�
u� 2u+� � 2u+�

�n�1=2
(j;k;1;1)

�
(5:14)

if (j; k; n) 2 
1; and (ii)

(uc+� � ua+� )nj;k =
1

6

��
u+ 2u+� + 2u+�

�n�1=2
(j;k;2;1)

�
�
u� 4u+� + 2u+�

�n�1=2
(j;k;2;2)

�
(5:15)

and

(uc+� � ua+� )nj;k =
1

6

��
u+ 2u+� + 2u+�

�n�1=2
(j;k;2;1)

�
�
u+ 2u+� � 4u+�

�n�1=2
(j;k;2;3)

�
(5:16)

if (j; k; n) 2 
2. Note that (uc+� )nj;k, (u
a+
� )nj;k, (u

c+
� )nj;k and (ua+� )nj;k are explicitly dependent

on �� and �� (and therefore explicitly dependent on �t). However, according to Eqs. (5.13){
(5.16), (uc+� � ua+� )nj;k and (uc+� � ua+� )nj;k are free from this depenency. Note that a similar
occurrence was encountered in the construction of the 1D a-� scheme (see the comment given
following Eq. (2.14)).

At this juncture, note that:

(a) The 2D a-� scheme becomes the 2D a scheme when � = 0.

(b) For the special case with � = 1=2, Eqs. (5.11) and (5.12) reduce to (u+� )
n
j;k = (uc+� )nj;k

and (u+� )
n
j;k = (uc+� )nj;k, respectively.

(c) Using the same reason given in the paragraph preceding Eq. (2.14), one may conclude
that numerical dissipation in the 2D a-� scheme may be controlled by varying the value
of �. In fact, it will be shown in Sec. 7 that (i) the 2D a-� scheme is unstable if � < 0 or
� > 1, and (ii) numerical di�usion indeed increases as � increases, at least in the range
of 0 � � � 0:7.

51



(d) Consider the case (j; k; n) 2 
1. Then, with the aid of Eqs. (4.28) and (5.13), Eq. (5.11)
can be rewritten as:

(u�)
n
j;k =

6

��
(ua+� )nj;k

+
�

3

�  
6u

��
+ 4u� � 2��

��
u�

!n�1=2

(j;k;1;2)

�
 
6u

��
� 2u� � 2��

��
u�

!n�1=2

(j;k;1;1)

�
(5.17)

Let (i) un�1=2(j;k;1;2), (u�)
n�1=2
(j;k;1;2) and (u�)

n�1=2
(j;k;1;2) be identi�ed with the values of u, @u=@� and

@u=@� at the mesh point ((j; k; 1; 2); n � 1=2), respectively; and (ii) un�1=2(j;k;1;1), (u�)
n�1=2
(j;k;1;1)

and (u�)
n�1=2
(j;k;1;1) be identi�ed with the values of u, @u=@� and @u=@� at the mesh

point ((j; k; 1; 1); n� 1=2), respectively. Then it can be shown that the expression
within the brackets on the right side of Eq. (5.17) is O(��;��). Furthermore, be-
cause Eq. (4.26) is applicable only for those points (�; �; t) 2 SE(j; k; n) only (see
Figs. 10(b) and 11(b)), the expression enclosed within the �rst bracket on the right
side of Eq. (4.26) is O(��;�t). From the above considerations, one concludes that the
error of u?(�; �; t; j; k; n) introduced by adding the extra term involving � on the right
side of Eq. (5.17) is second order in ��, ��, and �t. In other words, addition of the
term involving � results in lowering the order of accuracy of (u�)nj;k but not that of u

n
j;k.

A similar conclusion is also applicable to Eq. (5.11) for (j; k; n) 2 
2 and to Eq. (5.12)
for either (j; k; n) 2 
1 or (j; k; n) 2 
2.

The 2D a-� scheme can also be expressed in the form of Eq. (4.72) if

Q
(1)
1

def
=

1

3

0
BBBBB@

1 � �� � �� �(1� �� � ��)(1 + ��) �(1� �� � ��)(1 + ��)

1 � � �(1 + �� � 2�) �(1 + �� � 2�)

1 � � �(1 + �� � 2�) �(1 + �� � 2�)

1
CCCCCA (5:18)

Q
(1)
2

def
=

1

3

0
BBBBB@

1 + �� (1 + ��)(2� ��) �(1 + ��)(1 + ��)

�(1� �) �(2� �� � 4�) 1 + �� � 2�

0 0 0

1
CCCCCA (5:19)

Q
(1)
3

def
=

1

3

0
BBBBB@

1 + �� �(1 + ��)(1 + ��) (1 + ��)(2 � ��)

0 0 0

�(1� �) 1 + �� � 2� �(2� �� � 4�)

1
CCCCCA (5:20)
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Q
(2)
1

def
=

1

3

0
BBBBB@

1 + �� + �� (1 + �� + ��)(1 � ��) (1 + �� + ��)(1� ��)

�(1 � �) �(1� �� � 2�) �(1� �� � 2�)

�(1 � �) �(1� �� � 2�) �(1� �� � 2�)

1
CCCCCA (5:21)

Q
(2)
2

def
=

1

3

0
BBBBB@

1 � �� �(1 � ��)(2 + ��) (1 � ��)(1� ��)

1� � �(2 + �� � 4�) 1 � �� � 2�

0 0 0

1
CCCCCA (5:22)

and

Q
(2)
3

def
=

1

3

0
BBBBB@

1� �� (1� ��)(1 � ��) �(1� ��)(2 + ��)

0 0 0

1 � � 1 � �� � 2� �(2 + �� � 4�)

1
CCCCCA (5:23)

Note that, with the above de�nitions, Eqs. (4.73) and (4.74) are also valid for the 2D a-�
scheme.

5.2. The 2D a-�-�-� Scheme

For the same reason that motivates the extension of the 1D a-� scheme to become the
1D a-�-�-� scheme, the 2D a-� scheme will be extended to become the 2D a-�-�-� scheme.
As a preliminary for these extensions, �rst we shall provide a geometric interpretation of the
procedure by which the 1D a-� scheme was extended to become the 1D a-�-�-� scheme.

The key step in extending the 1D a-� scheme to 1D a-�-�-� scheme is the construction
of a nonlinear weighted average of (uc+x+)

n
j and (uc+x�)

n
j (see Eqs. (2.56){(2.61)). Let Pj� =

(xj�1=2; u
0n
j�1=2), Pj = (xj; u

n
j ) and Pj+ = (xj+1=2; u

0n
j+1=2) be three points in the x-u space.

Then according to Eqs. (2.12) and (2.56), (uc+x�)
n
j , (u

c+
x+)

n
j and (u

c+
x )nj , respectively, are equal to

the values of the slope du=dx of the three line segments Pj�Pj, PjPj+ and Pj�Pj+, multiplied
by the normalization factor �x=4. Equation (2.57) states that (uc+x )nj is the simple average
of (uc+x+)

n
j and (uc+x�)

n
j . Thus one can say that the key step in extending the 1D a-� scheme to

become the 1D a-�-�-� scheme is the construction of the weighted average of the normalized
slopes of Pj�Pj and PjPj+ using the function Wo. In the construction of the 2D a-�-�-�
scheme, paralleling the evaluation of the values of du=dx along the three edges of the triangle
4Pj�PjPj+ in the x-u space, we shall study the gradient vectors ru associated with the
four faces of a tetrahedron in the �-�-u space. The vertices of the tetrahedron are the points
O, P , Q and R depicted in either Fig. 15(a) or Fig. 15(b). The nonlinear weighted average
used in the 2D a-�-�-� will be constructed using three of the four gradient vectors referred
to above.
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To proceed, consider (j; k; n) 2 
q. Also let planes #1, #2, and #3, respectively, be the
planes containing the following trios of points: (i) points O, Q, and R; (ii) points O, R, and
P ; and (iii) points O, P , and Q. Then; in general, these planes di�er from one another and
from the plane that contains points P , Q and R. In the following derivations, �rst we shall
derive the equations representing the former three planes.

As a preliminary for the developments in this and the following sections, for any real
numbers s1, s2 and s3, let

f
(1)
� (s1; s2; s3)

def
= �(2s2 + s3)=��; f (1)� (s1; s2; s3)

def
= �(s2 + 2s3)=�� (5:24)

f
(2)
� (s1; s2; s3)

def
= (2s1 + s3)=��; f (2)� (s1; s2; s3)

def
= (s1 � s3)=�� (5:25)

f
(3)
� (s1; s2; s3)

def
= (s1 � s2)=��; f (3)� (s1; s2; s3)

def
= (2s1 + s2)=�� (5:26)

f (1)x (s1; s2; s3)
def
= � 3

2w
(s2 + s3); f (1)y (s1; s2; s3)

def
=

(3b+ w)s2 + (3b �w)s3
2wh

(5:27)

f (2)x (s1; s2; s3)
def
=

3s1
2w

; f (2)y (s1; s2; s3)
def
= �(3b+ w)s1 + 2ws3

2wh
(5:28)

f (3)x (s1; s2; s3)
def
=

3s1
2w

; f (3)y (s1; s2; s3)
def
=

(w � 3b)s1 + 2ws2
2wh

(5:29)

In the following, consider a mesh point (j; k; n) 2 
q (q = 1; 2). For any r = 1; 2; 3, let

xr
def
= (�1)q(unj;k � u0n(j;k;q;r)) (5:30)

(u(r)� )nj;k
def
= f

(r)
� (x1; x2; x3); (u(r)� )nj;k

def
= f (r)� (x1; x2; x3) (5:31)

(u(r)x )nj;k
def
= f (r)x (x1; x2; x3); (u(r)y )nj;k

def
= f (r)y (x1; x2; x3) (5:32)

Then it can be shown that, for each r = 1; 2; 3, plane # r is represented by

u = (u
(r)
� )nj;k (� � j��) + (u(r)� )nj;k (� � k��)

+unj;k (5.33)

if the coordinates (�; �) are used; or by

u = (u(r)x )nj;k (x� xj;k) + (u(r)y )nj;k (y � yj;k)

+unj;k (5.34)

if the coordinates (x; y) are used.

Using Eqs. (5.33) and (5.34), one concludes that, at any point on plane # r, r = 1; 2; 3,
we have  

@u

@�

!
�

= (u(r)� )nj;k and

 
@u

@�

!
�

= (u(r)� )nj;k (5:35)
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and  
@u

@x

!
y

= (u(r)x )nj;k and

 
@u

@y

!
x

= (u(r)y )nj;k (5:36)

As a result of Eqs. (5.35) and (5.36), at any point on plane # r, r = 1; 2; 3, (u(r)x )nj;k and

(u(r)y )nj;k can be considered as the covariant components of the vector ru with respect to

the Cartesian coordinates (x; y), while (u
(r)
� )nj;k and (u(r)� )nj;k are the covariant components

of ru with respect to the non-Cartesian coordinates (�; �) [55]. Furthermore, according to
Eq. (5.36), at any point on plane # r, r = 1; 2; 3, we have

jruj = (�r)
n
j;k

def
=
�q

(u
(r)
x )2 + (u

(r)
y )2

�n
j;k

(5:37)

Note that, by de�nition, (�r)nj;k, r = 1; 2; 3, are scalars. For readers who are not familiar with
tensor analysis, it is emphasized that generally (�r)nj;k would not be a scalar and therefore

the �rst equality sign in Eq. (5.37) would not be valid if u(r)x and u(r)y in the same equation,

respectively, are replaced by u
(r)
� and u(r)� .

To proceed further, let

(u(r)+� )nj;k
def
=

��

6
(u(r)� )nj;k; (u(r)+� )nj;k

def
=

��

6
(u(r)� )nj;k (5:38)

Then Eqs. (5.7), (5.8), (5.10), (5.24){(5.26), (5.30) and (5.31) imply that

(uc+� )nj;k =
1

3

h
u
(1)+
� + u

(2)+
� + u

(3)+
�

in
j;k

(5:39)

and

(uc+� )nj;k =
1

3

h
u(1)+� + u(2)+� + u(3)+�

in
j;k

(5:40)

i.e., (i) uc+� is the simple average of u
(r)+
� , r = 1; 2; 3. and (ii) uc+� is the simple average of

u(r)+� , r = 1; 2; 3. Equations (5.39) and (5.40) can be considered as the natural extension
of Eq. (2.57). Note that, for simplicity, in the above and hereafter we may suppress the
space-time mesh indices if no confusion could occur.

Note that, as a result of Eq. (5.38), at any point on plane # r, r = 1; 2; 3, (u
(r)+
� )nj;k and

(u(r)+� )nj;k are the normalized covariant components of ru with respect to the coordinates
(�; �). On the other hand, as a result of Eqs. (5.9) and (5.10), at any point on the plane that
contains the triangle 4PQR, (uc+� )nj;k and (uc+� )nj;k are the normalized covariant components
of ru with respect to the same coordinates (�; �). Recall that planes #1, #2, and #3,
respectively, are the planes that contain the triangles4OQR, 4ORP and 4OPQ. The last
three triangles and 4PQR are the four faces of the tetrahedron OPQR. Thus Eqs. (5.39)
and (5.40) state that ru associated with one face of this tetrahedron is one third of the sum
of ru associated with the other three faces. This conclusion is true only because the spatial
projection of point O on the plane that contains 4PQR is the geometric center of 4PQR.
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To proceed further, given any � � 0, the nonlinear weighted averages (uw+� )nj;k and
(uw+� )nj;k are de�ned by

uw+�
def
=

8>>><
>>>:

0; if �1 = �2 = �3 = 0

(�2�3)�u
(1)+
� + (�3�1)�u

(2)+
� + (�1�2)�u

(3)+
�

(�1�2)� + (�2�3)� + (�3�1)�
; otherwise

(5:41)

and

uw+�
def
=

8>>><
>>>:
0; if �1 = �2 = �3 = 0

(�2�3)�u(1)+� + (�3�1)�u(2)+� + (�1�2)�u(3)+�

(�1�2)� + (�2�3)� + (�3�1)�
; otherwise

(5:42)

respectively. To avoid dividing by zero, in practice a small positive number such as 10�60

is added to the denominators of the fractions on the right sides of Eqs. (5.41) and (5.42).
Note that, in the above weighted averages, the weight assigned to a quantity associated with
plane # r is greater if �r is smaller.

Also note that the above denominators vanish if � > 0, and any two of �1, �2, and
�3 vanish. Thus, consistency of the above de�nitions requires proof of the proposition:
�1 = �2 = �3 = 0, if any two of �1, �2, and �3 vanish.

Proof: As an example, let �1 = �2 = 0. Then Eq. (5.37) implies that u(r)x = u(r)y = 0, r = 1; 2.
In turn, Eqs. (5.27), (5.28) and (5.32) imply that x1 = x2 = x3 = 0. �3 = 0 now follows from
Eqs. (5.29), (5.32) and (5.37). QED.

As a result of Eq. (5.41), we have

uw+� =

8>><
>>:
u
(1)+
� ; if �1 = 0, �2 > 0, and �3 > 0

u
(2)+
� ; if �2 = 0, �1 > 0, and �3 > 0

u
(3)+
� ; if �3 = 0, �1 > 0, and �2 > 0

(5:43)

Assuming �r > 0, r = 1; 2; 3, we have

uw+� =
(1=�1)�u

(1)+
� + (1=�2)�u

(2)+
� + (1=�3)�u

(3)+
�

(1=�1)� + (1=�2)� + (1=�3)�
(5:44)

Thus the weight assigned to u
(r)+
� is proportional to (1=�r)�. By using (i) Eqs. (5.39), (5.41)

and (5.44), and (ii) the fact that u(r)+� = 0, r = 1; 2; 3, if �r = 0, r = 1; 2; 3, one arrives at
the conclusion that

uw+� = uc+� ; if �1 = �2 = �3 (5:45)

Obviously Eqs. (5.43){(5.45) are still valid if each symbol � is replaced by the symbol �.

With the above preliminaries, the 2D a-�-�-� scheme can be de�ned as follows: For any
(j; k; n) 2 
1, we assume Eq. (4.65) and

(u+� )
n
j;k = (ua+� )nj;k + 2�

�
uc+� � ua+�

�n
j;k

+ �
�
uw+� � uc+�

�n
j;k

(5:46)
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and
(u+� )

n
j;k = (ua+� )nj;k + 2�

�
uc+� � ua+�

�n
j;k

+ �
�
uw+� � uc+�

�n
j;k

(5:47)

with the understanding that (ua+� )nj;k and (u
a+
� )nj;k are those de�ned in Eqs. (4.66) and (4.67).

On the other hand, for any (j; k; n) 2 
2, we assume Eqs. (4.68), (5.46) and (5.47) with the
understanding that (ua+� )nj;k and (ua+� )nj;k are those de�ned in Eqs. (4.69) and (4.70).

At this juncture, note that, on the smooth part of a solution, �1, �2, and �3 are nearly
equal. Thus the weighted averages uw+� and uw+� are nearly equal to the simple averages uc+� ,
and uc+� , respectively (see Eq. (5.45)). As a result, the e�ect of weighted-averaging generally
is not discernible on the smooth part of a solution.

Finally note that, according to Eq. (5.37), evaluation of (�r)
� does not involve a fractional

power if � is an even integer. Because a fractional power is costly to evaluate, use of the
a-�-�-� scheme is less costly when � is an even integer.
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6. The Euler Solvers

We consider a dimensionless form of the 2-D unsteady Euler equations of a perfect gas.
Let �, u, v, p, and  be the mass density, x-velocity component, y-velocity component, static
pressure, and constant speci�c heat ratio, respectively. Let

u1 = �; u2 = �u; u3 = �v; u4 = p=( � 1) + �(u2 + v2)=2 (6:1)

fx1 = u2 (6:2)

fx2 = ( � 1)u4 + (3� )(u2)
2=(2u1)� ( � 1)(u3)

2=(2u1) (6:3)

fx3 = u2 u3=u1 (6:4)

fx4 = u2u4=u1 � (1=2)( � 1)u2
h
(u2)

2 + (u3)
2
i
=(u1)

2 (6:5)

fy1 = u3 (6:6)

fy2 = u2 u3=u1 (6:7)

fy3 = ( � 1)u4 + (3 � )(u3)
2=(2u1)� ( � 1)(u2)

2=(2u1) (6:8)

and
fy4 = u3u4=u1 � (1=2)( � 1)u3

h
(u2)

2 + (u3)
2
i
=(u1)

2 (6:9)

Then the Euler equations can be expressed as

@um
@t

+
@fxm
@x

+
@fym
@y

= 0; m = 1; 2; 3; 4 (6:10)

Assuming smoothness of the physical solution, Eq. (6.10) is a result of the more fundamental
conservation laws I

S(V )

~hm � d~s = 0; m = 1; 2; 3; 4 (6:11)

where
~hm = (fxm; f

y
m; um) ; m = 1; 2; 3; 4 (6:12)

are the space-time mass, x-momentum component, y-momentum component, and energy
current density vectors, respectively.

As a preliminary, let

fxm;`

def
= @fxm=@u`; and fym;`

def
= @fym=@u`; m; ` = 1; 2; 3; 4 (6:13)

The Jacobian matrices, which are formed by fxm;` and fym;`, m; ` = 1; 2; 3; 4, respectively, are
given in [9].

Because fxm and fym, m = 1; 2; 3; 4, are homogeneous functions of degree 1 [53] in u1, u2,
u3, and u4, we have

fxm =
4X

`=1

fxm;` u`; and fym =
4X

`=1

fym;` u` (6:14)
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Note that Eq. (6.14) is not essential in the development of the CE/SE Euler solvers to be
described in the following subsections. However, in certain instances, it will be used to recast
some equations into more convenient forms.

6.1. The 2D Euler a Scheme

For any (x; y; t) 2 SE(j; k; n), um(x; y; t), fxm(x; y; t), f
y
m(x; y; t), and ~hm(x; y; t), respec-

tively, are approximated by u�m(x; y; t ; j; k; n), f
x�
m (x; y; t ; j; k; n), fy�m (x; y; t ; j; k; n), and

~h�m(x; y; t ; j; k; n). They will be de�ned shortly. Let

u�m(x; y; t ; j; k; n)
def
= (um)

n
j;k + (umx)

n
j;k(x� xj;k) + (umy)

n
j;k(y � yj;k)

+(umt)
n
j;k(t� tn); m = 1; 2; 3; 4 (6.15)

where (um)nj;k, (umx)nj;k, (umy)nj;k, and (umt)nj;k are constants in SE(j; k; n). Obviously, they
can be considered as the numerical analogues of the values of um, @um=@x, @um=@y, and
@um=@t at (xj;k; yj;k; tn), respectively.

Let (fxm)
n
j;k, (f

y
m)

n
j;k, (f

x
m;`)

n
j;k, and (fym;`)

n
j;k denote the values of fxm, f

y
m, f

x
m;`, and fym;`,

respectively, when um, m = 1; 2; 3; 4, respectively, assume the values of (um)nj;k, m = 1; 2; 3; 4.
For any m = 1; 2; 3; 4, let

(fxmx)
n
j;k

def
=

4X
`=1

(fxm;`)
n
j;k(u`x)

n
j;k (6:16)

(fxmy)
n
j;k

def
=

4X
`=1

(fxm;`)
n
j;k(u`y)

n
j;k (6:17)

(fxmt)
n
j;k

def
=

4X
`=1

(fxm;`)
n
j;k(u`t)

n
j;k (6:18)

(fymx)
n
j;k

def
=

4X
`=1

(fym;`)
n
j;k(u`x)

n
j;k (6:19)

(fymy)
n
j;k

def
=

4X
`=1

(fym;`)
n
j;k(u`y)

n
j;k (6:20)

and

(fymt)
n
j;k

def
=

4X
`=1

(fym;`)
n
j;k(u`t)

n
j;k (6:21)

Because (i)

@fxm
@x

=
4X

`=1

fxm;`

@u`
@x

; m = 1; 2; 3; 4 (6:22)

and (ii) the expression on the right side of Eq. (6.16) is the numerical analogue of that on the
right side of Eq. (6.22) at (xj;k; yj;k; tn), (fxmx)

n
j;k can be considered as the numerical analogue

of the value of @fxm=@x at (xj;k; yj;k; tn). Similarly, (fxmy)
n
j;k, (f

x
mt)

n
j;k, (f

y
mx)

n
j;k, (f

y
my)

n
j;k, and
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(fymt)
n
j;k can be considered as the numerical analogues of the values of @fxm=@y, @f

x
m=@t,

@fym=@x, @f
y
m=@y, and @fym=@t at(xj;k; yj;k; t

n), respectively. As a result, we de�ne

fx�m (x; y; t ; j; k; n)
def
= (fxm)

n
j;k + (fxmx)

n
j;k(x� xj;k) + (fxmy)

n
j;k(y � yj;k)

+(fxmt)
n
j;k(t� tn); m = 1; 2; 3; 4 (6.23)

and

fy�m (x; y; t ; j; k; n)
def
= (fym)

n
j;k + (fymx)

n
j;k(x� xj;k) + (fymy)

n
j;k(y � yj;k)

+(fymt)
n
j;k(t� tn); m = 1; 2; 3; 4 (6.24)

Also, as an analogue to Eq. (6.12), we de�ne

~h�m(x; y; t ; j; k; n)
def
=

�
fx�m (x; y; t ; j; k; n); fy�m (x; y; t ; j; k; n);

u�m(x; y; t ; j; k; n)
�
; m = 1; 2; 3; 4 (6.25)

Note that, by their de�nitions: (i) (fxm)
n
j;k, (f

y
m)

n
j;k, (f

x
m;`)

n
j;k, and (fym;`)

n
j;k are functions of

(um)nj;k, m = 1; 2; 3; 4; (ii) (fxmx)
n
j;k and (fymx)

n
j;k are functions of (um)nj;k and (umx)nj;k, m =

1; 2; 3; 4; (iii) (fxmy)
n
j;k and (fymy)

n
j;k are functions of (um)nj;k and (umy)nj;k, m = 1; 2; 3; 4; and

(iv) (fxmt)
n
j;k and (fymt)

n
j;k are functions of (um)

n
j;k and (umt)nj;k, m = 1; 2; 3; 4.

Moreover, we assume that, for any (x; y; t) 2 SE(j; k; n), and any m = 1; 2; 3; 4,

@u�m(x; y; t ; j; k; n)

@t
+
@fx�m (x; y; t ; j; k; n)

@x
+
@fy�m (x; y; t ; j; k; n)

@y
= 0 (6:26)

Note that Eq. (6.26) is the numerical analogue of Eq. (6.10). With the aid of Eqs. (6.15),
(6.23), (6.24), (6.16), and (6.20), Eq. (6.26) implies that, for any m = 1; 2; 3; 4,

(umt)
n
j;k = �(fxmx)

n
j;k � (fymy)

n
j;k = �

4X
`=1

h
fxm;` u`x + fym;` u`y

in
j;k

(6:27)

Thus (umt)
n
j;k is a function of (um)

n
j;k, (umx)

n
j;k, and (umy)

n
j;k. From this result and the facts

stated following Eq. (6.25), one concludes that the only independent discrete variables needed
to be solved for in the current marching scheme are (um)nj;k, (umx)nj;k, and (umy)nj;k.

Consider the conservation elements depicted in Figs. 10(a) and 11(a). The Euler coun-
terpart to Eq. (4.11) isI

S(CEr(j;k;n))

~h�m � d~s = 0; r = 1; 2; 3; m = 1; 2; 3; 4 (6:28)

Next we shall introduce the Euler counterparts of Eqs. (4.22), (4.23), (4.27), and (4.28).
For any (j; k; n) 2 
, let0

B@ (f �m;`)
n
j;k

(f�m;`)
n
j;k

1
CA def

= T�1

0
B@ (fxm;`)

n
j;k

(fym;`)
n
j;k

1
CA ; m; ` = 1; 2; 3; 4 (6:29)
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and 0
B@ (um�)nj;k

(um�)nj;k

1
CA def

= T t

0
B@ (umx)nj;k

(umy)nj;k

1
CA ; m = 1; 2; 3; 4 (6:30)

The normalized counterparts of those parameters de�ned in Eqs. (6.29) and (6.30) are

(f �+m;`)
n
j;k

def
=

3�t

2��
(f �m;`)

n
j;k; and (f�+m;`)

n
j;k

def
=

3�t

2��
(f�m;`)

n
j;k (6:31)

and

(u+m�)
n
j;k

def
=

��

6
(um�)

n
j;k; and (u+m�)

n
j;k

def
=

��

6
(um�)

n
j;k (6:32)

In the following development, for simplicity, we may strip from every variable in an
equation its indices j, k, and n if all variables are associated with the same mesh point
(j; k; n) 2 
. Let F �+ and F �+, respectively, denote the matrices formed by f �+m;` and f�+m;`,
m; ` = 1; 2; 3; 4. Let I be the 4 � 4 identity matrix. Then the current counterparts to
Eqs. (4.29){(4.46) are

�(1)�
11

def
= I � F �+ � F �+ (6:33)

�(1)�
12

def
= �(I � F �+ � F �+)(I + F �+) (6:34)

�
(1)�
13

def
= �(I � F �+ � F �+)(I + F �+) (6:35)

�
(1)�
21

def
= I + F �+ (6:36)

�
(1)�
22

def
= �(I + F �+)(2I � F �+) (6:37)

�(1)�
23

def
= �(I + F �+)(I + F �+) (6:38)

�(1)�
31

def
= I + F �+ (6:39)

�(1)�
32

def
= �(I + F �+)(I + F �+) (6:40)

�(1)�
33

def
= �(I + F �+)(2I � F �+) (6:41)

�
(2)�
11

def
= I + F �+ + F �+ (6:42)

�
(2)�
12

def
= �(I + F �+ + F �+)(I � F �+) (6:43)

�
(2)�
13

def
= �(I + F �+ + F �+)(I � F �+) (6:44)

�(2)�
21

def
= I � F �+ (6:45)

�(2)�
22

def
= �(I � F �+)(2I + F �+) (6:46)

�(2)�
23

def
= �(I � F �+)(I � F �+) (6:47)

�
(2)�
31

def
= I � F �+ (6:48)

�
(2)�
32

def
= �(I � F �+)(I � F �+) (6:49)
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and
�(2)�
33

def
= �(I � F �+)(2I + F �+) (6:50)

Note that Eqs. (4.29){(4.46) become Eqs. (6.33){(6.50), respectively, under the following
substitution rules:

x1: 1, ��, and ��, be replaced by I, F �+, and F �+, respectively.

x2: �(q)�rs be replaced by �(q)�
rs , q = 1; 2 and r; s = 1; 2; 3, respectively.

As will be shown, under the above and other rules of substitution to be given later, many
other equations given in Secs. 4 and 5 can be converted to their Euler counterparts given in
this section. The latter will be referred to as the Euler images of the former.

Equation (6.28) is evaluated in Appendix C. Let (j; k; n) 2 
q. Let ~u, ~ut, ~u
+
� , and ~u+

� ,
respectively, be the 4 � 1 column matrices formed by um, umt, u

+
m�, and u+m�, m = 1; 2; 3; 4.

Then, with the aid of Eq. (6.14), for any pair of q and r (q = 1; 2 and r = 1; 2; 3), the results
with m = 1; 2; 3; 4 can be combined into the matrix formh

�(q)+
r1 ~u+ �(q)+

r2 ~u+
� + �(q)+

r3 ~u+
�

in
j;k

=
h
�(q)�
r1 ~u+ �(q)�

r2 ~u+
� + �(q)�

r3 ~u+
�

in�1=2
(j;k;q;r)

(6:51)

Eq. (6.51) is the Euler image of Eq. (4.51) under the substitution rules x2 and
x3: u, ut, u+� , and u+� be replaced by ~u, ~ut, ~u

+
� , and ~u+

� , respectively.

As a result of Eqs. (6.33){(6.50), we have

�(q)�
11 + �(q)�

21 + �(q)�
31 = 3I; q = 1; 2 (6:52)

and
�(q)�
12 + �(q)�

22 + �(q)�
32 = �(q)�

13 + �(q)�
23 + �(q)�

33 = 0; q = 1; 2 (6:53)

Equations (6.52) and (6.53) are the Euler images of Eqs. (4.47) and (4.48), respectively. For
either q = 1 or q = 2, by summing over the three equations r = 1; 2; 3 given in Eq. (6.51),
and using Eqs. (6.52) and (6.53), one concludes that, for any (j; k; n) 2 
q,

~unj;k =
1

3

3X
r=1

h
�(q)�
r1 ~u+ �(q)�

r2 ~u+
� + �(q)�

r3 ~u+
�

in�1=2
(j;k;q;r)

; q = 1; 2 (6:54)

As a result, ~unj;k can be evaluated in terms of the marching variables at the (n� 1=2)th time
level.

Note that, with the aid of Eqs. (6.33){(6.50), Eq. (6.54) can be expressed explicitly as

~unj;k =
1

3

��
I � F �+ � F �+

�n�1=2
(j;k;1;1)

~s
(1)
1 +

�
I + F �+

�n�1=2
(j;k;1;2)

~s
(1)
2 +

�
I + F �+

�n�1=2
(j;k;1;3)

~s
(1)
3

�
(6:54a)

if (j; k; n) 2 
1; or

~unj;k =
1

3

��
I + F �+ + F �+

�n�1=2
(j;k;2;1)

~s
(2)
1 +

�
I � F �+

�n�1=2
(j;k;2;2)

~s
(2)
2 +

�
I � F �+

�n�1=2
(j;k;2;3)

~s
(2)
3

�
(6:54b)
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if (j; k; n) 2 
2. Here (i)

~s
(1)
1

def
=
h
~u�

�
I + F �+

�
~u+
� �

�
I + F �+

�
~u+
�

in�1=2
(j;k;1;1)

(6:55)

~s
(1)
2

def
=
h
~u+

�
2I � F �+

�
~u+
� �

�
I + F �+

�
~u+
�

in�1=2
(j;k;1;2)

(6:56)

and

~s
(1)
3

def
=
h
~u�

�
I + F �+

�
~u+
� +

�
2I � F �+

�
~u+
�

in�1=2
(j;k;1;3)

(6:57)

with (j; k; n) 2 
1; and (ii)

~s
(2)
1

def
=
h
~u+

�
I � F �+

�
~u+
� +

�
I � F �+

�
~u+
�

in�1=2
(j;k;2;1)

(6:58)

~s
(2)
2

def
=
h
~u�

�
2I + F �+

�
~u+
� +

�
I � F �+

�
~u+
�

in�1=2
(j;k;2;2)

(6:59)

and

~s
(2)
3

def
=
h
~u+

�
I � F �+

�
~u+
� �

�
2I + F �+

�
~u+
�

in�1=2
(j;k;2;3)

(6:60)

with (j; k; n) 2 
2. Eqs. (6.54a){(6.60) are the Euler images of Eqs. (4.65), (4.68) and
(4.59){(4.64), respectively, under the substitution rules x1, x3 and
x4: s(q)r be replaced by ~s (q)r , q = 1; 2, and r = 1; 2; 3, respectively.

For any (j; k; n) 2 
q, the matrices (�(q)+
r1 )nj;k, r = 1; 2; 3, are known functions of ~unj;k.

Thus they can be evaluted after the latter is evaluated using Eq. (6.54). Assuming the

existence of the inverse of each of the matrices (�(q)+
r1 )nj;k (see Appendix D.3 for an existence

theorem), it follows that one can also evaluate ~S (q)
r (q = 1; 2 and r = 1; 2; 3) where

~S (q)
r

def
=
��
�(q)+
r1

�n
j;k

��1
�
h
�(q)�
r1 ~u+ �(q)�

r2 ~u+
� + �(q)�

r3 ~u+
�

in�1=2
(j;k;q;r)

(6:61)

Note that, in this paper, the inverse of a matrix A is denoted by [A]�1.

At this juncture, note that ~S (q)
r can be evaluated by a direct application of Eq. (6.61), if

one does not mind inverting the 4 � 4 matrices
�
�(q)+
r1

�n
j;k
. Alternatively, for each pair of q

and r, one may use the method of Gaussian elimination to obtain the 4� 1 column matrix
~S (q)
r as the solution to the matrix equation

�
�(q)+
r1

�n
j;k

~S (q)
r =

h
�(q)�
r1 ~u+ �(q)�

r2 ~u+
� + �(q)�

r3 ~u+
�

in�1=2
(j;k;q;r)

(6:62)

Furthermore, by multiplying Eq. (6.51) from the left with

��
�(q)+
r1

�n
j;k

��1
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repeatedly with all possible pairs of q and r, and using Eqs. (6.33){(6.50) and (6.61), one
has [9] (i) h

~u+
�
I + F �+

�
~u+
� +

�
I + F �+

�
~u+
�

in
j;k

= ~S
(1)
1 (6:63)

h
~u�

�
2I � F �+

�
~u+
� +

�
I + F �+

�
~u+
�

in
j;k

= ~S
(1)
2 (6:64)

and h
~u+

�
I + F �+

�
~u+
� �

�
2I � F �+

�
~u+
�

in
j;k

= ~S
(1)
3 (6:65)

where (j; k; n) 2 
1; and (ii)

h
~u�

�
I � F �+

�
~u+
� �

�
I � F �+

�
~u+
�

in
j;k

= ~S
(2)
1 (6:66)

h
~u+

�
2I + F �+

�
~u+
� �

�
I � F �+

�
~u+
�

in
j;k

= ~S
(2)
2 (6:67)

and h
~u�

�
I � F �+

�
~u+
� +

�
2I + F �+

�
~u+
�

in
j;k

= ~S
(2)
3 (6:68)

where (j; k; n) 2 
2.

Note that, with the aid of Eqs. (6.33), (6.36), (6.39), (6.42), (6.45), (6.48) and (6.61),
Eq. (6.54) can also be expressed as

~unj;k =
1

3

��
I � F �+ � F �+

�n
j;k

~S
(1)
1 +

�
I + F �+

�n
j;k

~S
(1)
2 +

�
I + F �+

�n
j;k

~S
(1)
3

�
(6:69)

if (j; k; n) 2 
1; or

~unj;k =
1

3

��
I + F �+ + F �+

�n
j;k

~S
(2)
1 +

�
I � F �+

�n
j;k

~S
(2)
2 +

�
I � F �+

�n
j;k

~S
(2)
3

�
(6:70)

if (j; k; n) 2 
2. Furthermore, by subtracting Eqs. (6.64) and (6.65), respectively, from
Eq. (6.63), one obtains

�
~u+
�

�n
j;k

= (~ua+� )nj;k
def
=

1

3

�
~S
(1)
1 � ~S

(1)
2

�
(6:71)

and �
~u+
�

�n
j;k

= (~ua+� )nj;k
def
=

1

3

�
~S
(1)
1 � ~S

(1)
3

�
(6:72)

respectively, where (j; k; n) 2 
1. Next, by subtracting Eq. (6.66) from Eqs. (6.67) and
(6.68), respectively, one obtains

�
~u+
�

�n
j;k

= (~ua+� )nj;k
def
=

1

3

�
~S
(2)
2 � ~S

(2)
1

�
(6:73)

and �
~u+
�

�n
j;k

= (~ua+� )nj;k
def
=

1

3

�
~S
(2)
3 � ~S

(2)
1

�
(6:74)

respectively, where (j; k; n) 2 
2.
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Note that, under the substitution rules x1, x3,
x5: ua+� and ua+� be replaced by ~ua+� and ~ua+� , respectively.

x6: s(q)r be replaced by ~S (q)
r , q = 1; 2, and r = 1; 2; 3, respectively.

Eqs. (6.63){(6.74) are the Euler images of Eqs. (4.53){(4.58), (4.65), (4.68), (4.66), (4.67),
(4.69) and (4.70), repectively.

The 2D Euler a scheme is formed by repeatedly applying the two marching steps de�ned,
respectively, by (i) Eqs. (6.54a), (6.71) and (6.72); and (ii) Eqs. (6.54b), (6.73) and (6.74).

Note that: (i) because ~S (q)
r can not be evaluated without ~unj;k being known �rst, one cannot

evaluate ~unj;k using Eqs. (6.69) and (6.70); and (ii) the 2D Euler a scheme is a two-way
marching scheme in the sense that the conservation conditions Eq. (6.28) can also be used
to construct its backward time marching version.

At this juncture, note that the 2D Euler a scheme is greatly simpli�ed by the fact that
~unj;k can be evaluated explicitly in terms of the marching variables at the (n � 1=2)th time

levels using Eq. (6.54). As a result, the matrices (�(q)+
rs )nj;k, which are nonlinear functions

of ~unj;k, can be evaluated easily. In other words, nonlinearity of the above matrix functions
does not pose a di�cult problem for the 2D Euler a scheme.

To explain how Eq. (6.54) arises, note that, because of Eq. (5.1),I
S(CE(j;k;n))

~h�m � d~s = 0; (j; k; n) 2 
 (6:75)

is the direct result of Eq. (6.28), the basic assumptions of the 2D Euler a scheme. According
to Eq. (5.1), CE(j; k; n) is the hexagonal cylinder A0B0C 0D0E0F 0ABCDEF depicted in
Figs. 10(a) and 11(a). Except for the top face A0B0C 0D0E0F 0, the other boundaries of this
cylinder are the subsets of three solution elements at the (n � 1=2)th time level. Thus, for

any m = 1; 2; 3; 4, the ux of ~h�m leaving CE(j; k; n) through all the boundaries except the
top face can be evaluated in terms of the marching variables at the (n� 1=2)th time level.
On the other hand, because the top face is a subset of SE(j; k; n), the ux leaving there is
a function of the marching variables associated with the mesh point (j; k; n). Furthermore,
because the outward normal to the top face has no spatial component, the total ux of
~h�m leaving CE(j; k; n) through the top face is the surface integral of u�m over the top face.
Because the center of SE(j; k; n) coincides with the center of the top face, it is easy to see
that the �rst-order terms in Eqs. (6.15) do not contribute to the total ux leaving the top
face. It follows that the total ux leaving the top face is a function of (um)nj;k only. As a
result of the above considerations, ~unj;k can be determined in terms of the marching variables
at the (n � 1=2)th time level by using Eq. (6.75) only. Equation (6.54) is the direct results
of Eq. (6.75).

Because implementation of the 2D Euler a scheme requires, at each mesh point (j; k; n) 2

, the solution of the three matrix equations (corresponding to r = 1; 2; 3) given in Eq. (6.62),
the scheme is referred to as locally implicit [1, p.22]. A simpli�ed and completely explicit
version of it will be described immediately.
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6.2. The Simpli�ed 2D Euler a Scheme

Eq. (6.75) is assumed in the 2D Euler a scheme. As a result, Eq. (6.54) is also applicable
to the new scheme.

To construct the rest of the simpli�ed scheme, note that, with the aid of Eqs. (6.33){
(6.50), a substitution of the approximations

�
�(q)+
r1

�n
j;k
�
�
�(q)+
r1

�n�1=2
(j;k;q;r)

(6:76)

into Eq. (6.61) reveals that

~S (q)
r � ~s (q)r ; q = 1; 2; r = 1; 2; 3 (6:77)

where ~s (q)r are de�ned in Eqs. (6.55){(6.60).

As a result of Eq. (6.77), Eqs. (6.71) and (6.72) can be approximated by

�
~u+
�

�n
j;k

= (~ua
0+

� )nj;k
def
=

1

3

�
~s
(1)
1 � ~s

(1)
2

�
(6:78)

and �
~u+
�

�n
j;k

= (~ua
0+

� )nj;k
def
=

1

3

�
~s
(1)
1 � ~s

(1)
3

�
(6:79)

respectively, where (j; k; n) 2 
1. Similarly, Eqs. (6.73) and (6.74) can be approximated by

�
~u+
�

�n
j;k

= (~ua
0+

� )nj;k
def
=

1

3

�
~s
(2)
2 � ~s

(2)
1
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(6:80)

and �
~u+
�

�n
j;k

= (~ua
0+

� )nj;k
def
=

1

3

�
~s
(2)
3 � ~s

(2)
1

�
(6:81)

respectively, where (j; k; n) 2 
2.

Note that Eqs. (6.78){(6.81) are the Euler images of Eqs. (4.66), (4.67), (4.69) and (4.70)
under the substitution rules x3, x4 and
x7: ua+� and ua+� be replaced by ~ua

0+
� and ~ua

0+
� , respectively.

The �rst marching step of the simpli�ed 2D Euler a scheme is formed by Eqs. (6.54a),
(6.78) and (6.79). The second marching step is formed by Eqs. (6.54b), (6.80) and (6.81).
Moreover, because every ~s (q)r (and thus every (~ua

0+
� )nj;k and (~ua

0+
� )nj;k with (j; k; n) 2 
) can

be evaluated without solving a system of equations, the simpli�ed version is computationally
more e�cient than the original scheme.

6.3. The 2D Euler a-� Scheme

Eq. (6.75) is assumed in the 2D Euler a-� scheme. As a result, Eq. (6.54) is also applicable
to the new scheme. As will be shown shortly, by considering their component equations
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separately, the vector equations that form the rest of the 2D Euler a-� can be developed in
a fashion similar to that which was used to develop the 2D a-� scheme.

Let (j; k; n) 2 
q and consider any m = 1; 2; 3; 4. Let (u0m)
n
(j;k;q;r), (u

c
m)

n
j;k, (u

c
m�)

n
j;k, and

(ucm�)
n
j;k be de�ned by a set of equations identical to Eqs. (5.3) and (5.6){(5.8) except that

the symbols u0, u, ut, uc, uc� and uc� in the latter equations are replaced, respectively, by
the symbols (u0m), um, umt, u

c
m, u

c
m� and ucm� in the former equations. Let Pm, Qm and Rm

(see Figs. 16(a) and 16(b)) be the three points in the �-�-u space with (i) their �- and �-
coordinates being those of the mesh points ((j; k; q; r); n� 1=2), r = 1; 2; 3, respectively, and
(ii) their u-coordinates being (u0m)

n
(j;k;q;r), r = 1; 2; 3, respectively. It can be shown that the

plane in the �-�-u space that intersects the above three points is represented by an equation
that is identical to Eq. (5.5) except that the symbols uc, uc� and uc� in Eq. (5.5) are now
replaced by ucm, u

c
m� and u

c
m�, respectively. As a result, for every point on the plane referred

to above, we have two relations that are identical to those given in Eq. (5.9) except that the
symbols uc� and uc� in Eq. (5.9) are now replaced by ucm� and u

c
m�, respectively. Furthermore,

let (uc+m�)
n
j;k and (uc+m�)

n
j;k be de�ned using an equation that is identical to Eq. (5.10) except

that the symbols uc+� , uc�, u
c+
� and uc� in the latter equation are replaced, respectively, by the

symbols uc+m�, u
c
m�, u

c+
m� and ucm� in the former equation.

Moreover, let ~u0, ~uc ~uc�, ~u
c
�, ~u

c+
� and ~uc+� , respectively, denote the 4 � 1 column matrices

formed by u0m, u
c
m, u

c
m�, u

c
m�, u

c+
m� and uc+m�, m = 1; 2; 3; 4. Then, with the aid of the relation

~ut = � 4

�t

�
F �+~u+

� + F �+~u+
�

�
(6:82)

which follows from Eqs. (6.27), (6.29), and (6.30), it becomes evident that we can obtain a
set of equations that are the Euler images of Eqs. (5.3), (5.4), (5.6){(5.8), and (5.10){(5.12)
under the substitution rules x1, x3, x5 and
x8: u0, uc, uc�, uc�, uc+� and uc+� be replaced by ~u0, ~uc, ~uc�, ~u

c
�, ~u

c+
� and ~uc+� , respectively.

Note that the Euler images of Eqs. (5.13){(5.16) under the substitution rules x3, x5 and
x8 are not valid for the current scheme because (i) (~ua+� )nj;k and (~ua+� )nj;k are de�ned in terms

of ~S (q)
r , q = 1; 2, r = 1; 2; 3 (see Eqs. (6.71){(6.74)), while (ua+� )nj;k and (ua+� )nj;k are de�ned

in terms of s(q)r , q = 1; 2, r = 1; 2; 3 (see Eqs. (4.66), (4.67), (4.69), and (4.70)); and (ii) ~S (q)
r ,

which were de�ned by Eq. (6.61), are structually di�erent from s(q)r , which were de�ned by
Eqs. (4.59){(4.64). However, as will be shown shortly, the Euler images of Eqs. (5.13){(5.16)
under the substitution rules x3, x7 and x8 do exist.

For future reference, several key equations associated with the 2D Euler a-� scheme will
be given explicitly. They are:

~u0n(j;k;q;r)
def
=
�
~u+

�t

2
~ut

�n�1=2
(j;k;q;r)

=
h
~u� 2

�
F �+~u+

� + F �+~u+
�

�in�1=2
(j;k;q;r)

(6:83)

(~uc+� )nj;k
def
=

(�1)q
6

�
~u 0n(j;k;q;2) � ~u 0n(j;k;q;1)

�
(6:84)
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Figure 16: Construction of the 2D Euler a-� and a-�-�-� schemes (m = 1; 2; 3; 4). (a) (j; k; n)
2 
1. (b) (j; k; n) 2 
2.
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(~uc+� )nj;k
def
=

(�1)q
6

�
~u 0n(j;k;q;3) � ~u 0n(j;k;q;1)

�
(6:85)

�
~u+
�

�n
j;k

= (~ua+� )nj;k + 2�(~uc+� � ~ua+� )nj;k (6:86)

and �
~u+
�

�n
j;k

= (~ua+� )nj;k + 2�(~uc+� � ~ua+� )nj;k (6:87)

where (j; k; n) 2 
q, q = 1; 2. The 2D Euler a-� scheme is formed by Eqs. (6.54), (6.86) and
(6.87) for any (j; k; n) 2 
q.

6.4. The Simpli�ed 2D Euler a-� Scheme

The de�ning equations of the simpli�ed 2D Euler a-� scheme are identical to those of the
2D Euler a-� scheme except that Eqs. (6.86) and (6.87) should be replaced by

�
~u+
�

�n
j;k

= (~ua
0+

� )nj;k + 2�(~uc+� � ~ua
0+

� )nj;k (6:88)

and
(u+� )

n
j;k = (~ua

0+
� )nj;k + 2�(~uc+� � ~ua

0+
� )nj;k (6:89)

respectively.

Moreover, with the aid of Eqs. (6.78){(6.81) and (6.83){(6.85), it can be shown that (i)

(~uc+� � ~ua
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� )nj;k =
1
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�
(6:90)

and

(~uc+� � ~ua
0+

� )nj;k =
1

6
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�
(6:91)

if (j; k; n) 2 
1; and (ii)

(~uc+� � ~ua
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� )nj;k =
1

6
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�
(6:92)

and

(~uc+� � ~ua
0+

� )nj;k =
1

6

��
~u+ 2~u+

� + 2~u+
�

�n�1=2
(j;k;2;1)

�
�
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�

�n�1=2
(j;k;2;3)

�
(6:93)

if (j; k; n) 2 
2.

Note that, under the substitution rules x3, x7 and x8, Eqs. (6.90){(6.93) are the Euler
images of Eqs. (5.13){(5.16), respectively. Also note that (~uc+� )nj;k, (~u

a0+
� )nj;k, (~u

c+
� )nj;k and

(~ua
0+

� )nj;k are explicitly dependent on F �+ and F �+ (and, as a result of Eq. (6.31), also

explicitly dependent on �t). However, according to Eqs. (6.90){(6.93), (~uc+� � ~ua
0+

� )nj;k and

(~uc+� � ~ua
0+

� )nj;k are free from this depenency.

6.5. The 2D Euler a-�-�-� Scheme
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In this subsection, the techniques used in constructing the 1D Euler a-�-�-� scheme and
the 2D a-�-�-� scheme will be combined and used to construct the 2D Euler a-�-�-� scheme.

To proceed, for any (j; k; n) 2 
q, any m = 1; 2; 3; 4, and any r = 1; 2; 3, let

xm;r
def
= (�1)q

h
(um)

n
j;k � (u0m)

n
(j;k;q;r)

i
(6:94)

(u(r)m�)
n
j;k

def
= f

(r)
� (xm;1; xm;2; xm;3); (u(r)m�)

n
j;k

def
= f (r)� (xm;1; xm;2; xm;3) (6:95)

(u(r)mx)
n
j;k

def
= f (r)x (xm;1; xm;2; xm;3); (u(r)my)

n
j;k

def
= f (r)y (xm;1; xm;2; xm;3) (6:96)

where f
(r)
� , f (r)� , f (r)x , and f (r)y are the functions de�ned in Eqs. (5.24){(5.29). Note that

Eqs. (6.94){(6.96) are the Euler counterparts of Eqs. (5.30){(5.32), respectively.

To proceed further, for either (j; k; n) 2 
1 or (j; k; n) 2 
2, consider any �xed value
of m = 1; 2; 3; 4. Let Pm, Qm and Rm be the three points de�ned in Sec. 6.3. Let
Om (see Figs. 16(a) and 16(b)) denote the point in the �-�-u space with the coordinates
(j��; k��; (um)nj;k). Let planes #1, #2, and #3, respectively, be the planes containing the
following trios of points: (i) points Om, Qm, and Rm; (ii) points Om, Rm, and Pm; and
(iii) points Om, Pm, and Qm. Then it can be shown that, for each r = 1; 2; 3, plane # r

is represented by an equation that is identical to Eq. (5.33) except that the symbols u
(r)
� ,

u(r)� , and u on the right side of Eq. (5.33) are now replaced by u
(r)
m�, u

(r)
m�, and (um), respec-

tively. Alternatively, the plane # r can be represented by another equation that is identical
to Eq. (5.34) except that the symbols u(r)x , u(r)y , and u on the right side of Eq. (5.34) are now

replaced by u(r)mx, u
(r)
my, and (um), respectively. As a result, for every point on the plane # r,

we have a set of relations that are identical to those given in Eqs. (5.35) and (5.36) except

that the symbols u
(r)
� , u(r)� , u(r)x , and u(r)y in the latter equations are now replaced by u

(r)
m�,

u(r)m�, u
(r)
mx, and u(r)my, respectively. It follows that, at any point on plane # r, we have

jruj = (�mr)
n
j;k

def
=
�q

(u
(r)
mx)2 + (u

(r)
my)2

�n
j;k

(6:97)

Furthermore, let

(u
(r)+
m� )nj;k

def
=

��

6
(u

(r)
m�)

n
j;k; (u(r)+m� )nj;k

def
=

��

6
(u(r)m�)

n
j;k (6:98)

Then Eqs. (6.84), (6.85), (5.24){(5.26) and (6.94){(6.96) imply that

(uc+m�)
n
j;k =

1

3

h
u
(1)+
m� + u

(2)+
m� + u

(3)+
m�

in
j;k

(6:99)

and

(uc+m�)
n
j;k =

1

3

h
u(1)+m� + u(2)+m� + u(3)+m�

in
j;k

(6:100)

i.e., (i) uc+m� is the simple average of u(r)+m� , r = 1; 2; 3; and (ii) uc+m� is the simple average of

u(r)+m� , r = 1; 2; 3. Equations (6.97){(6.100) are the Euler counterparts of Eqs. (5.37){(5.40),
respectively.
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With the above preliminaries, it becomes obvious that uw+m� and uw+m� , respectively the
present counterparts of the weighted averages uw+� and uw+� de�ned in Eqs. (5.41) and (5.42),
should be de�ned by

uw+m�
def
=

8>>><
>>>:

0; if �m1=�m2=�m3= 0

(�m2�m3)� u
(1)+
m� +(�m3�m1)� u

(2)+
m� +(�m1�m2)� u

(3)+
m�

(�m1�m2)� + (�m2�m3)� + (�m3�m1)�
; otherwise

(6:101)
and

uw+m�

def
=

8>>><
>>>:
0; if �m1=�m2=�m3= 0

(�m2�m3)� u(1)+m� +(�m3�m1)� u(2)+m� +(�m1�m2)� u(3)+m�

(�m1�m2)� + (�m2�m3)� + (�m3�m1)�
; otherwise

(6:102)
respectively. Note that, to avoid dividing by zero, in practice a small positive number such
as 10�60 is added to the denominators in Eqs. (6.101) and (6.102).

Let ~uw+
� (~uw+

� ) be the column matrix formed by uw+m� (u
w+
m� ), m = 1; 2; 3; 4. Then, for any

(j; k; n) 2 
, the 2D Euler a-�-�-� scheme is de�ned by Eq. (6.54) and

�
~u+
�

�n
j;k

= (~ua+� )nj;k + 2�(~uc+� � ~ua+� )nj;k + �(~uw+
� � ~uc+� )nj;k (6:103)

and �
~u+
�

�n
j;k

= (~ua+� )nj;k + 2�(~uc+� � ~ua+� )nj;k + �(~uw+
� � ~uc+� )nj;k (6:104)

where � and � are adjustable parameters.

6.6. The Simpli�ed 2D Euler a-�-�-� Scheme

For any (j; k; n) 2 
, the simpli�ed 2D Euler a-�-�-� scheme is formed by Eq. (6.54) and

�
~u+
�

�n
j;k

= (~ua
0+

� )nj;k + 2�(~uc+� � ~ua
0+

� )nj;k + �(~uw+
� � ~uc+� )nj;k (6:105)

and �
~u+
�

�n
j;k

= (~ua
0+

� )nj;k + 2�(~uc+� � ~ua
0+

� )nj;k + �(~uw+
� � ~uc+� )nj;k (6:106)

where � and � are adjustable parameters.

6.7. The 2D CE/SE Shock-Capturing Scheme

Let � = 1=2 and � = 1. Then the 2D Euler a-�-�-� scheme and the simpli�ed 2D Euler
a-�-�-� scheme reduce to the same scheme. For any (j; k; n) 2 
, the reduced scheme is
formed by Eq. (6.54) and �

~u+
�

�n
j;k

= (~uw+
� )nj;k (6:107)

and �
~u+
�

�n
j;k

= (~uw+
� )nj;k (6:108)
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The above scheme is one of the simplest among the 2D Euler solvers known to the authors.
The value of � is the only adustable parameter allowed in this scheme. Because this scheme
is the 2D counterpart of the 1D CE/SE shock-capturing scheme and shares with the latter
all the distinctive features described in Sec. 2.8, it will be referred to as the 2D CE/SE
shock-capturing scheme.
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7. Stability

In this section, stability of the 2D a and a-� schemes will be studied using the von
Neumann analysis. Note that Eqs. (4.73) and (4.74) are valid for these two schemes if
the matrices Q(q)

r (q = 1; 2 and r = 1; 2; 3) are de�ned using Eqs. (5.18){(5.23) with the
understanding that � = 0 should be assumed for the 2D a scheme.

To proceed, let

M (1)(��; ��)
def
= Q

(1)
1 e(i=3)(��+��) +Q

(1)
2 e(i=3)(�2��+��) +Q

(1)
3 e(i=3)(���2��) (7:1)

and
M (2)(��; ��)

def
= Q

(2)
1 e�(i=3)(��+��) +Q

(2)
2 e�(i=3)(�2��+��) +Q

(2)
3 e�(i=3)(���2��) (7:2)

Furthermore, for all (j; k; n) 2 
, let

~q (j; k; n) = ~q �(n; ��; ��)e
i(j��+k��); (i

def
=
p�1; �� < ��; �� � �) (7:3)

where ~q �(n; ��; ��) is a 3 � 1 column matrix (see Sec. 4 in [1]). Substituting Eq. (7.3) into
Eqs. (4.73) and (4.74), one concludes that: (i)

~q �(n+m; ��; ��) =
h
M (1)(��; ��)M

(2)(��; ��)
im

~q �(n; ��; ��) (7:4)

where n = �1=2;�3=2;�5=2; : : :, and m = 0; 1; 2; : : :; and (ii)

~q �(n+m; ��; ��) =
h
M (2)(��; ��)M

(1)(��; ��)
im

~q �(n; ��; ��) (7:5)

where n = 0;�1;�2; : : :, and m = 0; 1; 2; : : :. Equation (7.4) implies that the ampli�cation
matrix among the half-integer time levels is M (1)(��; ��)M (2)(��; ��); while Eq. (7.5) implies
that the ampli�cation matrix among the whole-integer time levels isM (2)(��; ��)M (1)(��; ��).

LetA andB be two arbitrary n�nmatrices. ThenAB andBA have the same eigenvalues,
counting multiplicity [54, p.53]. Thus the 3� 3 ampli�cation matrix among the half-integer
time levels and that among the whole-integer time levels have the same eigenvalues. These
eigenvalues may be referred to as the ampli�cation factors. The ampli�cation factors are
functions of phase angles �� and ��. In addition, they are functions of a set of coe�cients
that are dependent on the physical properties and the mesh parameters. These coe�cients
are (i) �� and �� for the 2D a scheme; and (ii) ��, ��, and � for the 2D a-� scheme. Let
�1, �2, and �3 denote the ampli�cation factors. In the current stability analysis, a scheme
is said to be stable in a domain of the above coe�cients if, for all values of the coe�cients
belonging to this domain, and all �� and �� with �� < ��; �� � �,

j�1j � 1; j�2j � 1; and j�3j � 1 (7:6)

Consider the 2D a scheme. By using its two-way marching nature and the fact that its
stencil is invariant under space-time inversion, it is shown in [9] that, for any given ��, ��,
��, and ��,

j�1�2�3j = 1 (7:7)
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It follows from Eqs. (7.6) and (7.7) that the 2D a scheme must be neutrally stable, i.e.,

j�1j = j�2j = j�3j = 1; �� < ��; �� � � (7:8)

if it is stable. In other words, the 2D a scheme is non-dissipative if it is stable. Moreover, a
systematic numerical evaluation of �1, �2, and �3, for di�erent values of ��, ��, ��, and ��,
has con�rmed that the 2D a scheme is indeed neutrally stable in the stability domain de�ned
by Eq. (4.75). In the following, we shall discuss the meaning of this stability domain.

Let (j; k; n) 2 
. According to Eqs. (4.73) and (4.74), the marching variables at the mesh
point (j; k; n) are completely determined by those of seven mesh points at the (n�1)th time
level (i.e., the mesh point (j; k; n�1), and points A, B, C, D, E and F shown in Figs. 17(a)
and 17(b)). As a result, in this paper, the interior and boundary of the hexagon ABCDEF
shall be referred to as the numerical domain of dependence of the mesh point (j; k; n) at the
(n � 1)th time level. Note that the dashed lines depicted in Figs. 17(a) and 17(b) are the
spatial projections of boundaries of CEs.

The 2D a scheme is designed to solve Eq. (4.1). For Eq. (4.1), the value of u is a constant
along a characteristic line. The characteristic line passing through the mesh point (j; k; n)
will intersect a point on the plane t = tn�1. The point of intersection, referred to as the
backward characteristic projection of the mesh point (j; k; n) at the (n � 1)th time level, is
the \domain" of dependence at the (n� 1)th time level for the value of u at the mesh point
(j; k; n). It is shown in Appendix D.1 that the backward characteristic projection is in the
interior of the numerical domain of dependence if and only if Eq. (4.75) is satis�ed.

At this juncture, note that the concept of characteristics was never used in the design
of the 2D a scheme. Nevertheless, its stability condition is completely consistent with the
general stability requirement of an explicit solver of a hyperbolic equation, i.e., the analytic
domain of dependence be a subset of the numerical domain of dependence.

Next we consider the stability of the 2D a-� scheme. Recall that the 1-D a-� scheme is
not stable for any Courant number � if � < 0, or � > 1 [2]. Similarly, the results of numerical
experiments indicate that the 2D a-� scheme is not stable in any domain on the ��-�� plane
if � < 0 or � > 1. For any � with 0 � � � 1, the 2D a-� scheme has a stability domain on
the ��-�� plane. The stability domains for several values of � were obtained numerically. As
shown in Figs. 18(a)-(c), these domains (shaded areas) vary only slightly in shape and size
from that depicted in Fig. 14. They become smaller in size as � increases.

Given any pair of �� and ��, �1, �2 and �3 are functions of �� and ��. Let (i)

j�3j � j�2j � j�1j � 0; �� < ��; �� � � (7:9)

and (ii) �1 = 1 when �� = �� = 0. Then �1 can be referred to as the principal ampli�cation
factor; while �2 and �3 are referred to as the spurious ampli�cation factors [1]. In general,
the principal ampli�cation factor is the deciding factor in determining the accuracy of com-
putations [1]. Speci�cally, numerical solutions may su�er annihilations of sharply di�erent
degrees at di�erent locations and di�erent frequencies if numerical di�usion associated with
�1 varies greatly with respect to ��, ��, ��, and �� [7, p.20]. Moreover, note that (1� j�rj) is
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Figure 17: The numerical domains of dependence associated with the 2D CE/SE solvers.
(a) (j; k; n) 2 
1. (b) (j; k; n) 2 
2.
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Figure 18: The stability domain of the 2D a-� scheme. (a) �=0.1. (b) �=0.5. (c) �=0.8.
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Figure 19: The functions �r(�), r = 1; 2; 3.

a measure of the numerical di�usion associated with �r, r = 1; 2; 3. For a given �, let D(�)
denote the stability domain of the 2D a-� scheme on the ��-�� plane. Let

�r(�)
def
= max

��<�� ;����; (�� ;��)2D(�)
(1� j�rj); r = 1; 2; 3; 0 � � � 1 (7:10)

Then, for a given � and each r, (1 � j�rj) is bounded uniformly from above by �r(�). The
numerically estimated values of �r(�) are plotted in Fig. 19. From this �gure, one concludes
that the numerical di�usion, particularly that associated with �1, can be bounded uniformly
from above by an arbitrary small number by choosing an � small enough. Note that this
property is also shared by the 1-D a-� scheme (see Eq. (3.19) in [2]). Moreover, the results
shown in Fig. 19 indicate that �2(�) and �3(�) are much larger than �1(�) in the range of
0 � � � 0:5. Thus, in this range, the spurious part of a numerical solution is annihilated
much faster than the principal part. Also it is seen that the numerical di�usion associated
with the principal solution, measured by �1(�), increases with � in the range of 0 � � � 0:7.

Because of the appearance of nonlinear weighted-average terms in its de�ning equations,
stability of the 2D a-�-�-� scheme is di�cult to study analytically. However, results from
numerical experiments indicate that the stability domain of this scheme is slightly larger
than that of the 2D a-� scheme when � > 0 and � > 0.

Before we proceed further, several concepts related to stability need to be clari�ed. First
note that, to de�ne a numerical problem, one must specify (i) the main scheme (such as any
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solver described in Secs. 4{6) used in the updating of the marching variables at the interior
mesh points, and (ii) the auxiliary discrete initial/boundary conditions. Thus, generally
stability is not a concept involving only the main scheme.

Next note that use of the von Neumann stability analysis can be rigorously justi�ed only
if the numerical problem under consideration satis�es a set of strict conditions [1]. They
include (i) the mesh used should be uniform in both spatial and temporal directions, (ii)
the main scheme used should be linear in the discrete variables, and (iii) the boundary
conditions used should be periodic in nature. Because (i) the stability conditions generated
using the von Neumann analysis are expressed in terms of the coe�cients of the discrete
variables and the mesh parameters only, and (ii) the above coe�cients and mesh parameters
are constant and independent of the initial/boundary conditions, the stability of a numerical
problem that satis�es the above strict conditions (i){(iii) is completely independent of the
initial/boundary conditions. For this special numerical problem, stability can be considered
as a concept involving only the main scheme.

For a uniform-mesh linear problem with non-periodic boundary conditions, the stability
conditions generated from the von Neumann analysis generally are necessary but not su�-
cient conditions for stability. For such a problem, the initial/boundary conditions may have
an impact on stability and numerical di�usion. Note that the results given earlier in this
section are obtained without considering this impact.

Generally, stability of a nonlinear problem is highly dependent on the initial/boundary
conditions, and therefore highly problem-dependent. As a result, a discussion of the stability
of nonlinear solvers without specifying the exact initial/boundary conditions, such as that
to be given immediately, is inherently imprecise in nature.

To proceed, for each mesh point (j; k; n) 2 
, a local Euler CFL number �e � 0 is intro-
duced in Appendix D.2 (see Eqs. (D.32){(D.35)). This number has the following property:
For the ow variables at the mesh point (j; k; n), its analytical domain of dependence at the
(n�1)th time level lies within the corresponding numerical domain of dependence if and only
if �e < 1. According to the results of numerical experiments, both the 2D Euler a scheme
and the simpli�ed 2D Euler a scheme are generally unstable. However the former is only
marginally unstable when �e;max < 1 where �e;max is the maximum value of �e ever reached
in a numerical experiment. As a matter of fact, in simulating smooth ows, its round-o�
error often never reaches an appreciable level before the end of the simulation run. As for
the other solvers described in Sec. 6, stability generally can be realized if �e;max < 1 and
0:05 < � < 1. However, for a nonsmooth ow problem, stricter stability conditions such as
�e;max < 2=3, 0:1 < � < 1 and � � 1 may apply.
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8. Conclusions and Discussions

The space-time CE/SE method was conceived from a global CFD perspective and de-
signed to avoid the limitations of the traditional methods. It was built from ground zero
with a foundation which is solid in physics and yet mathematically simple enough that one
can build from it a coherent, robust, e�cient and accurate CFD numerical framework. A
clear and thorough discussion of these basic motivating ideas was given in Sec. 1.

The 1D CE/SE schemes [2] were reformulated in Sec. 2 such that the reader can see more
clearly the structural similarity between the solvers of the 1D convection equation Eq. (1.1)
and those of the 1D Euler equations. In addition, this reformulation also paves the way for
the construction of the 2D CE/SE schemes and makes it easier for the reader to appreciate
the consistency between the construction of the 1D CE/SE schemes and that of the 2D
schemes.

It was shown in Sec. 3 that the basic building blocks of the spatial meshes used in the 2D
CE/SE schemes are triangles. As a result, these schemes are compatible with the simplest
unstructured meshes, and therefore are applicable to 2D problems with complex geometries.
Furthermore, because they are constructed without using the dimensional-splitting approach,
these schemes are genuinely multidimensional.

The 2D a scheme, a nondissipative solver for the 2D convection equation Eq. (4.1), was
constructed in Sec. 4. It is a natural extension of the 1D a scheme and shares with the latter
several nontraditional features which are listed following Eq. (4.74).

Because a nonlinear extension of a nondissipative linear solver generally is unstable or
highly dispersive, the 2D a scheme was modi�ed in Sec. 5 to become the dissipative 2D a-�
and a-�-�-� schemes before it was extended to model the 2D Euler equations. It was clearly
explained in Sec. 5 that these 2D dissipative schemes are the natural extensions of the 1D a-�
and a-�-�-� schemes, respectively. Moreover, as in the case of the latter schemes, numerical
dissipation introduced in the former schemes is controlled by the parameters �, � and �.

A family of solvers for the 2D Euler equations were constructed in Sec. 6. Not only
are these solvers the natural extensions of the 1D CE/SE Euler solvers, but their algebraic
structures are strikingly similar to those of the 2D a, a-� and a-�-�-� schemes.

Next, stability of the 2D solvers described in Sec. 4{6 was discussed in Sec. 7. It was
shown that the 2D a scheme is nondissipative in the stability domain de�ned by Eq. (4.75).
It was also shown that the necessary stability conditions for the 2D solvers include: (i)
the local CFL number < 1 at every mesh point, and (ii) 1 � � � 0, � � 0 and � � 0
if applicable. Note that these conditions are also necessary stability conditions for the 1D
CE/SE solvers.

A summary of the key results of the present paper has been given. It is seen that each of
the present 2D schemes is constructed in a very simple and consistent manner as the natural
extension of its 1D counterpart. This is made possible because of the present development's
strict adherence to its two basic beliefs which were stated in Sec. 1.

79



To evaluate the accuracy and robustness of the CE/SE schemes, the two simplest schemes
among them, i.e., the 1D and 2D CE/SE shock-capturing schemes, will be used in Part II [3]
to simulate ows involving phenomena such as shock waves, contact discontinuities, expan-
sion waves and their interactions. The numerical results, when compared with experimental
data, exact solutions or numerical solutions by other methods, indicate that these schemes
can consistently resolve shock and contact discontinuities with high accuracy. Note that
other CE/SE schemes described in this paper have also been shown to be accurate solvers
for other applications [11,13{17,20,24,26-28]. Furthermore, using the present method, Yu et
al. have successfully constructed several accurate solvers for 1D and 2D problems with sti�
source terms [21,22,32].

Note that the 1D CE/SE schemes have been extended to become accurate 2D and 3D
solvers by others without using the current approach. After constructing their 1D CE/SE
solver for the Saint Venant equations, Molls et al. [29] construct the 2D version using the
Strang's splitting technique [56]. Furthermore, several 2D and 3D non-splitting Euler solvers
have also been constructed by Zhang et al. [57{61] without using triangular or tetrahedral
meshes.

The triangles depicted in Fig. 5 are obtained by sectioning each parallelogram depicted
in the same �gure into two triangles. The 2D CE/SE solvers can also be constructed using
the triangles that are obtained by sectioning each parallelogram into four triangles. These
solvers along with other CE/SE solvers with nonuniform spatial meshes [4] will be described
in future papers.

This paper is concluded with a discussion of several other extensions.

8.1. A sketch of a 3D Euler solver

The CE/SE method can be extended to three spatial dimensions using the same procedure
that was used in extending the method from one spatial dimension to two spatial dimensions.
In the 3D case, at each mesh point, the mesh values of any physical variable and its three
spatial gradient components are considered as independent variables. Because there are four
independent discrete variables per physical variable (or per conservation law to be solved),
construction of the 3D a scheme and the 3D Euler a scheme demands that four CEs be
de�ned at each mesh point. As will be shown immediately, this requirement can be met by
using tetrahedrons as the basic building blocks of the 3D spatial mesh.

To pave the way, consider the 2D case and Figs. 5 and 6(a). The quadrilaterals GFAB,
GBCD and GDEF are the spatial projections of the CEs associated with the point G0.
The CEs in the 3D case can be constructed in a similar fashion. Consider the tetrahedrons
ABCD and ABCP depicted in Fig. 20. Points G and H are the centroids of ABCD and
ABCP , respectively. The two tetrahedrons share the face ABC. The polyhedron GABCH
is then de�ned as the spatial projection of a CE associated with a space-time mesh point G0.
The CE is thus a right cylinder in space-time, with GABCH as its spatial base. The point
G is the spatial projection of point G0.

In a similar fashion, three additional CEs associated with the mesh point G0 can be
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Figure 20: Spatial projection of part of a 3D space-time mesh, showing the construction of
a CE.

constructed by considering in turn the three tetrahedrons that share with ABCD one of its
other three faces.

Note that a structured 3D spatial mesh can be constructed from the tetrahedrons that
are obtained by sectioning the parallelepipeds occupying a spatial region. The details will
be given in a separate paper.

8.2. Concept of Dual Space-Time Meshes and Its Applications

The mesh depicted in Fig. 4(a) is staggered in time, i.e., the mesh points that have the
same spatial locations appear only at alternating time levels. In Fig. 21(a), the mesh depicted
in Fig. 4(a) (referred to as the mesh 1) is superimposed on another staggered mesh (referred
to as the mesh 2), with the mesh points of the latter being marked by solid triangular
symbols. The combination of the meshes 1 and 2 shall be referred to as the dual mesh. As
shown in Fig. 21(b), a CE of a mesh point marked by a triangle may coincide with a CE of
another mesh point marked by a dot.

Obviously the 1D a scheme can also be constructed using mesh 2. As a matter of fact, one
can even combine two independent 1D a schemes, one constructed on the mesh 1, and the
other on the mesh 2, into a \single" scheme referred to as the 1D dual a scheme. Similarly
one can also construct the dual 1D a-� and a-�-�-� schemes. Each of the new schemes has
two completely decoupled solutions. Without considering this decoupled nature in the von
Neumann analysis, it can be shown that the resulting ampli�cation factors of the dual 1D a
scheme are identical to those of the Leapfrog scheme as given in [52, p.100]. Note that the
de�ciency of the standard practice that the ampli�cation factors of the Leapfrog scheme are
obtained without taking into account the decoupled nature of its solutions was addressed in
Sec. 1.

Let (j; n) be a mesh point of mesh 1 (mesh 2). Then (j � 1=2; n) are mesh points of
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(a).  The dual space-time mesh
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Figure 21: Concept of dual space-time meshes. (a) The dual space-time mesh.
(b) A rectangular space-time region shared by CE�(1=2; 1=2) and CE+(0; 1=2).
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mesh 2 (mesh 1). Recall that u0nj�1=2 (see Eq. (2.10)) are de�ned in terms of the marching
variables at (j � 1=2; n � 1=2), which are on the same mesh with (j; n). Thus the two
solutions on meshes 1 and 2 of either the dual 1D a-� scheme or the dual 1D a-�-�-� scheme
are decoupled. However, by replacing u0nj�1=2 with u

n
j�1=2 (which are evaluated using Eq. (2.8)

with the understanding that j be replaced by j�1=2) in their construction, each of the above
two schemes will turn into a new scheme in which the solutions on meshes 1 and 2 become
coupled. The coupling results from the fact that unj and unj�1=2 are not associated with the
same mesh. Note that the solutions of the new schemes generally are indistinguishable from
(or only slightly more di�usive than) those of the original schemes.

In [12,25], two implicit schemes for solving the convection-di�usion equation Eq. (1.2)
were constructed using a dual space-time mesh. In the case that � = 0, both the above
implicit schemes reduce to the explicit non-dissipative dual a scheme. As a result, the
ampli�cation factors of these schemes reduce to those of the Leapfrog scheme if � = 0.
Furthermore, these two implicit schemes have the property that their numerical dissipation
approaches zero as the physical dissipation approaches zero. The signi�cance of this property
was discussed in Sec. 1.

In case that � > 0, both the above implicit schemes are truly implicit. This implicit
nature is consistent with the fact that, for � > 0, the value of a solution to Eq. (1.2) at
any point (x; t) depends on the initial data and all the boundary data up to the time t.
In other words, generally an implicit scheme should be used to solve an initial/boundary-
value problem, such as one involving Eq. (1.2) with � > 0. This requirement becomes more
important as the di�usion term in Eq. (1.2) becomes more dominant.

In addition, for both the above implicit schemes, the solution at the mesh points marked
by dots, through the di�usion term in Eq. (1.2), is coupled with that at the mesh points
marked by triangles if � > 0. Also it was shown in [12,25] that, in the pure di�usion case
(i.e., when a = 0), the principal ampli�cation factors of both the above implicit schemes
reduce to the ampli�cation factor of the Crank-Nicolson scheme [52]. Note that the latter
has only one ampli�cation factor.

The concept of dual space-time meshes also is applicable to the 2D and 3D cases. As
an example, consider a 2D mesh (the mesh 1) with the mesh points marked by circles in
Fig. 6(a){(c). For this case, the mesh points of the mesh 2 are points G, C 0, E0, G00, I 00 and
K 00. In general, if (j; k; n) represents a mesh point of the mesh 1, then (j; k; n0) represents a
mesh point of the mesh 2 if and only if (n� n0) is a half-integer. Note that a more complete
discussion of the concept of dual meshes will be given in Part II [3].

Note that not only can the concept of dual meshes be used to construct implicit schemes,
but it can also be used to implement reecting boundary conditions (see the following pa-
per [3]). In addition, this concept is indispensable in the development of a 2D triangular
unstructured-mesh CE/SE scheme [31].

8.3. A discussion on locally adjustable numerical dissipation

Consider the 1D a-�-�-� scheme, i.e., the scheme de�ned by Eqs. (2.7) and (2.60). With

83



�, � and � being held constant, generally numerical dissipation associated with this scheme
increases as the Courant number � decreases. To compensate for this e�ect, Eq. (2.60) may
be replaced by

(u+x )
n
j = (ua+x )nj + 2�(�)(uc+x � ua+x )nj + �(�)(uw+x � uc+x )nj (8:1)

where �(�) and �(�) are monotonically decreasing functions of � with �(0) = �(0) = 0. The
optimal forms of these functions generally are problem-dependent. The scheme de�ned by
Eqs. (2.7) and (8.1) has the property that

(u+x )
n
j ! (ua+x )nj as �t! 0 (8:2)

With the aid of Eq. (8.2), it is easy to see that the new scheme shares with the a scheme the
same property Eq. (2.19) in [2], i.e.,

un+1j ! unj and (u+x )
n+1
j ! (u+x )

n
j as �t! 0 (8:3)

In the new scheme introduced above, numerical dissipation is controlled by the parameters
�(�), �(�) and � with the �rst two being the functions of the convection speed a, the
mesh interval �x and the time-step size �t. In similar extensions involving solvers of more
complicated nonlinear equations, the values of these parameters may vary with space and
time, and their local values generally will be functions of local values of dynamic variables,
mesh intervals and time-step size.
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Appendix A. A CE/SE Solver for the Sod's Shock Tube Problem
with Non-Reecting Boundary Conditions

implicit real*8(a-h,o-z)

dimension q(3,999), qn(3,999), qx(3,999), qt(3,999),

* s(3,999), vxl(3), vxr(3), xx(999)

c

c nx must be an odd integer.

nx = 101

it = 100

dt = 0.4d-2

dx = 0.1d-1

ga = 1.4d0

rhol = 1.d0

ul = 0.d0

pl = 1.d0

rhor = 0.125d0

ur = 0.d0

pr = 0.1d0

ia = 1

c

nx1 = nx + 1

nx2 = nx1/2

hdt = dt/2.d0

tt = hdt*dfloat(it)

qdt = dt/4.d0

hdx = dx/2.d0

qdx = dx/4.d0

dtx = dt/dx

a1 = ga - 1.d0

a2 = 3.d0 - ga

a3 = a2/2.d0

a4 = 1.5d0*a1

u2l = rhol*ul

u3l = pl/a1 + 0.5d0*rhol*ul**2

u2r = rhor*ur

u3r = pr/a1 + 0.5d0*rhor*ur**2

do 5 j = 1,nx2

q(1,j) = rhol

q(2,j) = u2l

q(3,j) = u3l

q(1,nx2+j) = rhor

q(2,nx2+j) = u2r

q(3,nx2+j) = u3r

do 5 i = 1,3
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qx(i,j) = 0.d0

qx(i,nx2+j) = 0.d0

5 continue

c

open (unit=8,file='for008')

write (8,10) tt,it,ia,nx

write (8,20) dt,dx,ga

write (8,30) rhol,ul,pl

write (8,40) rhor,ur,pr

c

do 400 i = 1,it

m = nx + i - (i/2)*2

do 100 j = 1,m

w2 = q(2,j)/q(1,j)

w3 = q(3,j)/q(1,j)

f21 = -a3*w2**2

f22 = a2*w2

f31 = a1*w2**3 - ga*w2*w3

f32 = ga*w3 - a4*w2**2

f33 = ga*w2

qt(1,j) = -qx(2,j)

qt(2,j) = -(f21*qx(1,j) + f22*qx(2,j) + a1*qx(3,j))

qt(3,j) = -(f31*qx(1,j) + f32*qx(2,j) + f33*qx(3,j))

s(1,j) = qdx*qx(1,j) + dtx*(q(2,j) + qdt*qt(2,j))

s(2,j) = qdx*qx(2,j) + dtx*(f21*(q(1,j) + qdt*qt(1,j)) +

* f22*(q(2,j) + qdt*qt(2,j)) + a1*(q(3,j) + qdt*qt(3,j)))

s(3,j) = qdx*qx(3,j) + dtx*(f31*(q(1,j) + qdt*qt(1,j)) +

* f32*(q(2,j) + qdt*qt(2,j)) + f33*(q(3,j) + qdt*qt(3,j)))

100 continue

if (i.ne.(i/2)*2) goto 150

do 120 k = 1,3

qx(k,nx1) = qx(k,nx)

qn(k,1) = q(k,1)

qn(k,nx1) = q(k,nx)

120 continue

150 j1 = 1 - i + (i/2)*2

mm = m - 1

do 200 j = 1,mm

do 200 k = 1,3

qn(k,j+j1) = 0.5d0*(q(k,j) + q(k,j+1) + s(k,j) - s(k,j+1))

vxl(k) = (qn(k,j+j1) - q(k,j) - hdt*qt(k,j))/hdx

vxr(k) = (q(k,j+1) + hdt*qt(k,j+1) - qn(k,j+j1))/hdx

qx(k,j+j1) = (vxl(k)*(dabs(vxr(k)))**ia + vxr(k)*(dabs(vxl(k)))

* **ia)/((dabs(vxl(k)))**ia + (dabs(vxr(k)))**ia + 1.d-60)

200 continue
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m = nx1 - i + (i/2)*2

do 300 j = 1,m

do 300 k = 1,3

q(k,j) = qn(k,j)

300 continue

400 continue

c

m = nx1 -it + (it/2)*2

mm = m - 1

xx(1) = -0.5d0*dx*dfloat(mm)

do 500 j = 1,mm

xx(j+1) = xx(j) + dx

500 continue

do 600 j = 1,m

x = q(2,j)/q(1,j)

y = a1*(q(3,j) - 0.5d0*x**2*q(1,j))

z = x/dsqrt(ga*y/q(1,j))

write (8,50) xx(j),q(1,j),x,y,z

600 continue

c

close (unit=8)

10 format(' t = ',g14.7,' it = ',i4,' ia = ',i4,' nx = ',i4)

20 format(' dt = ',g14.7,' dx = ',g14.7,' gamma = ',g14.7)

30 format(' rhol = ',g14.7,' ul = ',g14.7,' pl = ',g14.7)

40 format(' rhor = ',g14.7,' ur = ',g14.7,' pr = ',g14.7)

50 format(' x =',f8.4,' rho =',f8.4,' u =',f8.4,' p =',f8.4,

* ' M =',f8.4)

stop

end
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Appendix B. Proof for Eq. (4.51)

To proceed, �rst we shall evaluate the ux leaving each of the six quadrilaterals that form
the boundary of a CE (see Figs. 10(a) and 11(a)). As a preliminary, note that, in Fig. 10(a),

area of ABGF = area of CDGB = area of EFGD =
2wh

3
(B:1)

In Fig. 11(a), we have

area of BCGA = area of DEGC = area of FAGE =
2wh

3
(B:2)

Equations (B.1) and (B.2) can be proved easily using the information provided in Fig. 12(a).
Moreover, because u�(x; y; t; j; k; n) is linear in x, y, and t (see Eq. (4.10)), its average
value over any quadrilateral is equal to its value at the geometric center (centroid) of the
quadrilateral. With the above preparations, ux evaluation can be carried out easily using
Eqs. (4.6a){(4.6c), (4.8), (4.10), (B.1), and (B.2).

For each quadrilateral, the result of ux evaluation is a formula involving ax, ay, unj;k,
(ux)nj;k, and (uy)nj;k. It can be converted to another formula involving ��, ��, unj;k, (u

+
� )

n
j;k,

and (u+� )
n
j;k. To carry out the above conversion, note that Eqs. (4.19), (4.20), (4.22), (4.23),

(4.27), and (4.28) imply that

0
B@ ax

ay

1
CA =

2

3�t

0
B@w � b w + b

�h h

1
CA
0
B@ ��

��

1
CA (B:3)

and, for any (j; k; n) 2 
,

0
B@ (ux)nj;k

(uy)nj;k

1
CA =

3

w

0
BB@

1 1

�w + b

h

w � b

h

1
CCA
0
B@ (u+� )

n
j;k

(u+� )
n
j;k

1
CA (B:4)

Let (ux)
n
j;k, (uy)

n
j;k; : : :, be abbreviated as ux, uy; : : :, respectively. Then Eqs. (B.3) and (B.4)

imply that

ay =
2h

3�t
(�� � ��) (B:5)

hax +
�
w

3
� b

�
ay =

4wh

9�t
(�� + 2��) (B:6)

hax �
�
w

3
+ b

�
ay =

4wh

9�t
(2�� + ��) (B:7)

ux =
3

w

�
u+� + u+�

�
(B:8)
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uy =
3

wh

h
(w � b)u+� � (w + b)u+�

i
(B:9)

�t

4
(axux + ayuy) = ��u

+
� + ��u

+
� (B:10)

 
b

2
+
w

6

!
ux +

h

2
uy = 2u+� � u+� (B:11)

and  
b

2
� w

6

!
ux +

h

2
uy = u+� � 2u+� (B:12)

The conversion referred to above can be carried out using Eqs. (B.5){(B.12).

Consider Fig. 10(a). The results of ux evaluation involving the quadrilaterals that form
the boundaries of CEr(j; k; n), r = 1; 2; 3, and (j; k; n) 2 
1 are given here:

(1) The ux leaving CE1(j; k; n) through G0F 0A0B0 is

2wh

3

�
u+ u+� + u+�

�n
j;k

(2) The ux leaving CE1(j; k; n) through G0GFF 0 is

�2wh

9

�
�� + 2��

��
u+ 2u+� � u+� +

�
��u

+
� + ��u

+
�

��n
j;k

(3) The ux leaving CE1(j; k; n) through G0B0BG is

�2wh

9

�
2�� + ��

��
u� u+� + 2u+� +

�
��u

+
� + ��u

+
�

��n
j;k

(4) The ux leaving CE1(j; k; n) through AFGB is

�2wh

3

�
u� u+� � u+�

�n�1=2
j+1=3;k+1=3

(5) The ux leaving CE1(j; k; n) through ABB0A0 is

2wh

9

�
�� + 2��

��
u� 2u+� + u+� �

�
��u

+
� + ��u

+
�

��n�1=2
j+1=3;k+1=3

(6) The ux leaving CE1(j; k; n) through AA0F 0F is

2wh

9

�
2�� + ��

��
u+ u+� � 2u+� �

�
��u

+
� + ��u

+
�

��n�1=2
j+1=3;k+1=3
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(7) The ux leaving CE2(j; k; n) through G0B0C 0D0 is

2wh

3

�
u� 2u+� + u+�

�n
j;k

(8) The ux leaving CE2(j; k; n) through G0GBB0 is

2wh

9

�
2�� + ��

��
u� u+� + 2u+� +

�
��u

+
� + ��u

+
�

��n
j;k

(9) The ux leaving CE2(j; k; n) through G0D0DG is

2wh

9

�
�� � ��

��
u� u+� � u+� +

�
��u

+
� + ��u

+
�

��n
j;k

(10) The ux leaving CE2(j; k; n) through CBGD is

�2wh

3

�
u+ 2u+� � u+�

�n�1=2
j�2=3;k+1=3

(11) The ux leaving CE2(j; k; n) through CDD0C 0 is

�2wh

9

�
2�� + ��

��
u+ u+� � 2u+� �

�
��u

+
� + ��u

+
�

��n�1=2
j�2=3;k+1=3

(12) The ux leaving CE2(j; k; n) through CC 0B0B is

2wh

9

�
�� � ��

��
u+ u+� + u+� �

�
��u

+
� + ��u

+
�

��n�1=2
j�2=3;k+1=3

(13) The ux leaving CE3(j; k; n) through G0D0E0F 0 is

2wh

3

�
u+ u+� � 2u+�

�n
j;k

(14) The ux leaving CE3(j; k; n) through G0GDD0 is

2wh

9

�
�� � ��

��
u� u+� � u+� +

�
��u

+
� + ��u

+
�

��n
j;k

(15) The ux leaving CE3(j; k; n) through G0F 0FG is

2wh

9

�
�� + 2��

��
u+ 2u+� � u+� +

�
��u

+
� + ��u

+
�

��n
j;k

(16) The ux leaving CE3(j; k; n) through EDGF is

�2wh

3

�
u� u+� + 2u+�

�n�1=2
j+1=3;k�2=3
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(17) The ux leaving CE3(j; k; n) through EFF 0E0 is

2wh

9

�
�� � ��

��
u+ u+� + u+� �

�
��u

+
� + ��u

+
�

��n�1=2
j+1=3;k�2=3

(18) The ux leaving CE3(j; k; n) through EE0D0D is

�2wh

9

�
�� + 2��

��
u� 2u+� + u+� �

�
��u

+
� + ��u

+
�

��n�1=2
j+1=3;k�2=3

Consider Fig. 11(a). The results of ux evaluation involving the quadrilaterals that
form the boundaries of CEr(j; k; n), r = 1; 2; 3, and (j; k; n) 2 
2, are given here:

(19) The ux leaving CE1(j; k; n) through G0C 0D0E0 is

2wh

3

�
u� u+� � u+�

�n
j;k

(20) The ux leaving CE1(j; k; n) through G0GCC 0 is

2wh

9

�
�� + 2��

��
u� 2u+� + u+� +

�
��u

+
� + ��u

+
�

��n
j;k

(21) The ux leaving CE1(j; k; n) through G0E0EG is

2wh

9

�
2�� + ��

��
u+ u+� � 2u+� +

�
��u

+
� + ��u

+
�

��n
j;k

(22) The ux leaving CE1(j; k; n) through DCGE is

�2wh

3

�
u+ u+� + u+�

�n�1=2
j�1=3;k�1=3

(23) The ux leaving CE1(j; k; n) through DEE0D0 is

�2wh

9

�
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u+ 2u+� � u+� �

�
��u

+
� + ��u

+
�

��n�1=2
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(24) The ux leaving CE1(j; k; n) through DD0C 0C is

�2wh

9

�
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��
u� u+� + 2u+� �

�
��u

+
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+
�

��n�1=2
j�1=3;k�1=3

(25) The ux leaving CE2(j; k; n) through G0E0F 0A0 is

2wh

3

�
u+ 2u+� � u+�

�n
j;k
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(26) The ux leaving CE2(j; k; n) through G0GEE0 is

�2wh

9

�
2�� + ��

��
u+ u+� � 2u+� +

�
��u

+
� + ��u

+
�

��n
j;k

(27) The ux leaving CE2(j; k; n) through G0A0AG is

2wh

9

�
�� � ��

��
u+ u+� + u+� +
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��u

+
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+
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��n
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(28) The ux leaving CE2(j; k; n) through FEGA is

�2wh

3

�
u� 2u+� + u+�

�n�1=2
j+2=3;k�1=3

(29) The ux leaving CE2(j; k; n) through FAA0F 0 is

2wh
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��u
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(30) The ux leaving CE2(j; k; n) through FF 0E0E is

2wh
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(31) The ux leaving CE3(j; k; n) through G0A0B0C 0 is

2wh
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(32) The ux leaving CE3(j; k; n) through G0GAA0 is
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(33) The ux leaving CE3(j; k; n) through G0C 0CG is

�2wh
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��u

+
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(34) The ux leaving CE3(j; k; n) through BAGC is

�2wh

3

�
u+ u+� � 2u+�

�n�1=2
j�1=3;k+2=3

(35) The ux leaving CE3(j; k; n) through BCC 0B0 is

2wh

9

�
�� � ��

��
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�
��u

+
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+
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��n�1=2
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(36) The ux leaving CE3(j; k; n) through BB0A0A is

2wh

9

�
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��
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��u

+
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+
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��n�1=2
j�1=3;k+2=3

With the aid of Eqs. (4.29){(4.46) and (4.49a){(4.50c), Eq. (4.51) is the result of (1){(36)
and Eq. (4.11). QED.
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Appendix C. Proof for Eq. (6.51)

As a preliminary, note that Eqs. (6.18), (6.21), and (6.27) can be used to obtain

fxmt = �
4X

`;q=1

fxm;`

�
fx`;quqx + fy`;quqy

�
(C:1)

and

fymt = �
4X

`;q=1

fym;`

�
fx`;quqx + fy`;quqy

�
(C:2)

In this appendix, we adopt the same convention stated following Eq. (6.32). It follows from
Eqs. (6.29){(6.32) that

0
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1
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0
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CA
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and 0
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0
B@ u+m�

u+m�

1
CA ; m = 1; 2; 3; 4 (C:4)

An immediate result of Eqs. (C.3) and (C.4) is

4X
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; m = 1; 2; 3; 4 (C:5)

By using Eqs. (6.14), (6.16){(6.21), and (C.1){(C.5), it can be shown that
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and
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3
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4
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Note that each of Eqs. (C.15) and (C.16) represents two equations. One corresponds to the
upper signs; while the other, to the lower signs.

Next we shall evaluate the ux of ~h�m leaving each of the six quadrilaterals that form the
boundary of a CE (see Figs. 10(a) and 11(a)). The evaluation procedure is similar to that
described in Appendix B. For the current case, the key equations used are Eqs. (4.6a){(4.6c),
(6.15), (6.23){(6.25), and (C.6){(C.16). Futhermore, as will be shown shortly, the structures
of the results obtained here are very similar to those given in Appendix B.

Consider Fig. 10(a). The results of ux evaluation involving the quadrilaterals that form
the boundaries of CEr(j; k; n), r = 1; 2; 3, and (j; k; n) 2 
1, are given here:
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(1) The ux of ~h�m leaving CE1(j; k; n) through G0F 0A0B0 is
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4X
`=1

�
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� 24u` + 2u+`� � u+`� +
4X
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�
f �+`;q u

+
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+
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�35
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;
n

j;k

(3) The ux of ~h�m leaving CE1(j; k; n) through G0B 0BG is
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+
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�35
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;
n
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(4) The ux of ~h�m leaving CE1(j; k; n) through AFGB is

�2wh

3

�
um � u+m� � u+m�

�n�1=2
j+1=3;k+1=3

(5) The ux of ~h�m leaving CE1(j; k; n) through ABB0A0 is
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8<
:

4X
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(6) The ux of ~h�m leaving CE1(j; k; n) through AA0F 0F is
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4X
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(7) The ux of ~h�m leaving CE2(j; k; n) through G0B 0C 0D0 is

2wh

3

�
um � 2u+m� + u+m�

�n
j;k

(8) The ux of ~h�m leaving CE2(j; k; n) through G0GBB0 is

2wh

9
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4X
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�
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4X
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�
f �+`;q u

+
q� + f�+`;q u

+
q�

�35
9=
;
n

j;k

(9) The ux of ~h�m leaving CE2(j; k; n) through G0D0DG is

2wh
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(10) The ux of ~h�m leaving CE2(j; k; n) through CBGD is

�2wh

3

�
um + 2u+m� � u+m�

�n�1=2
j�2=3;k+1=3

(11) The ux of ~h�m leaving CE2(j; k; n) through CDD0C 0 is

�2wh

9

8<
:

4X
`=1

�
2f �+m;` + f�+m;`

� 24u` + u+`� � 2u+`� �
4X

q=1

�
f �+`;q u

+
q� + f�+`;q u

+
q�

�35
9=
;
n�1=2

j�2=3;k+1=3

(12) The ux of ~h�m leaving CE2(j; k; n) through CC 0B0B is
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(13) The ux of ~h�m leaving CE3(j; k; n) through G0D0E 0F 0 is

2wh

3

�
um + u+m� � 2u+m�

�n
j;k

(14) The ux of ~h�m leaving CE3(j; k; n) through G0GDD0 is

2wh

9

8<
:

4X
`=1

�
f�+m;` � f �+m;`

� 24u` � u+`� � u+`� +
4X

q=1

�
f �+`;q u
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q� + f�+`;q u

+
q�

�35
9=
;
n

j;k

(15) The ux of ~h�m leaving CE3(j; k; n) through G0F 0FG is

2wh

9

8<
:

4X
`=1

�
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4X

q=1

�
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q�

�35
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n

j;k

(16) The ux of ~h�m leaving CE3(j; k; n) through EDGF is

�2wh

3

�
um � u+m� + 2u+m�

�n�1=2
j+1=3;k�2=3

(17) The ux of ~h�m leaving CE3(j; k; n) through EFF 0E0 is

2wh

9

8<
:

4X
`=1

�
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4X
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;
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(18) The ux of ~h�m leaving CE3(j; k; n) through EE0D0D is

�2wh

9

8<
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4X
`=1
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f �+m;` + 2f�+m;`
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4X

q=1

�
f �+`;q u

+
q� + f�+`;q u

+
q�

�35
9=
;
n�1=2

j+1=3;k�2=3

Consider Fig. 11(a). The results of ux evaluation involving the quadrilaterals that
form the boundaries of CEr(j; k; n), r = 1; 2; 3, and (j; k; n) 2 
2, are given here:

(19) The ux of ~h�m leaving CE1(j; k; n) through G0C 0D0E 0 is

2wh

3

�
um � u+m� � u+m�

�n
j;k

(20) The ux of ~h�m leaving CE1(j; k; n) through G0GCC 0 is
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� 24u` � 2u+`� + u+`� +
4X
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�
f �+`;q u

+
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�35
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j;k

(21) The ux of ~h�m leaving CE1(j; k; n) through G0E0EG is
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j;k

(22) The ux of ~h�m leaving CE1(j; k; n) through DCGE is

�2wh

3

�
um + u+m� + u+m�

�n�1=2
j�1=3;k�1=3

(23) The ux of ~h�m leaving CE1(j; k; n) through DEE0D0 is
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(24) The ux of ~h�m leaving CE1(j; k; n) through DD0C 0C is
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(25) The ux of ~h�m leaving CE2(j; k; n) through G0E0F 0A0 is

2wh

3

�
um + 2u+m� � u+m�

�n
j;k
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(26) The ux of ~h�m leaving CE2(j; k; n) through G0GEE0 is
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(27) The ux of ~h�m leaving CE2(j; k; n) through G0A0AG is
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(28) The ux of ~h�m leaving CE2(j; k; n) through FEGA is

�2wh

3

�
um � 2u+m� + u+m�

�n�1=2
j+2=3;k�1=3

(29) The ux of ~h�m leaving CE2(j; k; n) through FAA0F 0 is

2wh

9
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(30) The ux of ~h�m leaving CE2(j; k; n) through FF 0E0E is
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(31) The ux of ~h�m leaving CE3(j; k; n) through G0A0B0C 0 is

2wh
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�
um � u+m� + 2u+m�

�n
j;k

(32) The ux of ~h�m leaving CE3(j; k; n) through G0GAA0 is
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�35
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(33) The ux of ~h�m leaving CE3(j; k; n) through G0C 0CG is
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(34) The ux of ~h�m leaving CE3(j; k; n) through BAGC is

�2wh

3

�
um + u+m� � 2u+m�

�n�1=2
j�1=3;k+2=3

(35) The ux of ~h�m leaving CE3(j; k; n) through BCC 0B 0 is
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(36) The ux of ~h�m leaving CE3(j; k; n) through BB0A0A is
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With the aid of Eqs. (6.33){(6.50) and (4.49a){(4.50c), Eq (6.51) is the result of (1){(36)
and Eq. (6.28). QED.
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Figure 22: The numerical and analytical domains of dependence associated with the 2D
a-scheme.

Appendix D. Supplementary Notes

D.1. A Discussion of Eq. (4.75)

Here we shall prove an assertion made in Sec. 7 about the 2D a scheme, i.e., the backward
characteristic projection of a mesh point (j; k; n) 2 
 at the (n � 1)th time level is in
the interior of the numerical domain of dependence of the same mesh point if and only if
Eq. (4.75) is satis�ed (see Fig. 22). For simplicity, hereafter the above mesh point will be
referred to as point O (not shown). In Fig. 22, the spatial projection of point O at the
(n� 1)th time level is represented by point O0; while the backward characteristic projection
of point O at the (n � 1)th time level is represented by point P . Without any loss of
generality, we shall assume that j = k = 0. Thus (i)

� = � = 0; and t = n�t (D:1)

for point O, and (ii)
� = � = 0; and t = (n� 1)�t (D:2)

for point O0.

To simplify the discussion, Eq. (4.1) is converted to an equivalent form in which �, �,
and t are the independent variables, i.e.,

@u

@t
+ a�

@u

@�
+ a�

@u

@�
= 0 (D:3)
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Here a� and a� are de�ned in Eq. (4.22). The characteristics of Eq. (D.3) are the family of
straight lines de�ned by

� = a�t+ c1; and � = a�t+ c2 (D:4)

where c1 and c2 are constant along a characteristic, and vary from one characteristic to
another. Because points O and P share the same characteristic line, Eqs. (D.1) and (D.4)
imply that

� = �a��t; � = �a��t; and t = (n� 1)�t (D:5)

for point P . Note that the temporal coordinate, i.e., t = (n � 1)�t, of points O0 and P are
suppressed in Fig. 22.

According to the de�nition given in Sec. 7, the numerical domain of dependence of point
O at the (n � 1)th time level is the hexagon depicted in Fig. 22. Here the term `hexagon'
refers to both the boundary and the interior. The coordinates (�; �) of the vertices A, B, C,
D, E, and F are given in the same �gure. The six edges of the hexagon and their equations
on the �-� plane are

AB : �+ + �+ = 1

DE : �+ + �+ = �1
BC : �+ = 1

EF : �+ = �1 (D.6)

CD : �+ = �1
FA : �+ = 1

Here the normalized coordinates �+ and �+ are de�ned by

�+
def
= �=��; and �+

def
= �=�� (D:7)

As a result of Eq. (D.6), a point (�; �) is in the interior of the hexagon ABCDEF if and
only if

j�+ + �+j < 1; j�+j < 1; and j�+j < 1 (D:8)

Equations (D.5), (D.7) and (D.8) coupled with Eqs. (4.27) imply point P is in the interior
of the hexagon ABCDEF if and only if Eq. (4.75) is satis�ed. QED.

D.2. The Local Euler CFL Number

The de�nition of the local Euler CFL number at the point O (the same point de�ned in
Sec. D.1) is given here.

To proceed, consider Fig. 23. In this �gure, point O0 and the hexagon ABCDEF are also
those de�ned in Sec. D.1. Let u, v and c be the x-velocity, the y-velocity and the sonic speed
at point O, respectively. Let ~ex and ~ey be the unit vectors in the x- and the y- directions,
respectively. Let ~q denote the velocity vector at point O, i.e.,

~q
def
= u~ex + v~ey (D:9)
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Figure 23: The numerical and analytical domains of dependence associated with the 2D
CE/SE Euler solvers.

Let the point P depicted in Fig. 23 be at the (n � 1)th time level with its spatial position
de�ned by ��!

O0P = �~q�t (D:10)

Point P is the center of the circle depicted in Fig. 23. This circle lies at the (n� 1)th time
level and has a radius of c�t. Furthermore, it is the intersection of (i) the Mach cone [62,
p.425] with point O being its vertex, and (ii) the plane with t = (n � 1)�t. For the Euler
equations Eq. (6.10), and in the limit of �t ! 0, this circle is the domain of dependence
of point O at the (n � 1)th time level. Here a circle refers to both its circumference and
interior. The local Euler CFL number �e at point O will be de�ned such that �e < 1 if and
only if the domain of dependence of the Euler equations (i.e., the circle) lies in the interior of
the numerical domain of dependence (i.e., the hexagon ABCDEF ). In other words, �e < 1
if and only if the normalized coordinates (�+; �+) of every point on the circumference of the
circle satisfy Eq. (D.8).

As a preliminary, let (i) @C denote the set of the points on the circumference of the circle
de�ned above, and (ii) Se denote the set of the unit vectors on the x-y plane. Then, for any
point R 2 @C (see Fig. 23), there exists an ~e 2 Se such that

�!
PR = c�t~e (D:11)

Combining Eqs. (D.10) and (D.11), one has

��!
O0R = (c~e� ~q)�t (D:12)
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To proceed further, note that Eqs. (4.18), (4.20) and (D.7) imply that

r�+ =
1

2w
(~ex � w + b

h
~ey) (D:13)

and

r�+ =
1

2w
(~ex +

w � b

h
~ey) (D:14)

Let (i) �+(O0), �+(P ) and �+(R) denote the values of �+ at points O0, P and R, respectively,
and (ii) �+(O0), �+(P ) and �+(R) denote the values of �+ at points O0, P and R, respectively.
Then, because �+(O0) = �+(O0) = 0 and the gradient vectors given in Eqs. (D.13) and (D.14)
are constant, Eqs. (D.10) and (D.12){(D.14) imply that

�+(P ) = ��t ~q � r�+ = � �t

2w
(u� w + b

h
v) (D:15)

�+(P ) = ��t ~q � r�+ = � �t

2w
(u+

w � b

h
v) (D:16)

�+(R) = �t (c~e� ~q) � r�+ = �+(P ) + c�t~e � r�+ (D:17)

�+(R) = �t (c~e� ~q) � r�+ = �+(P ) + c�t~e � r�+ (D:18)

and
�+(R) + �+(R) = �+(P ) + �+(P ) + c�t~e � r(�+ + �+) (D:19)

Note that point R is a function of ~e 2 Se. In the following, we shall evaluate the maxima
and minima of �+(R), �+(R) and (�+(R) + �+(R)) over the range Se. To proceed, let

�
(1)
�

def
=
�
�~q � r�+ � cjr�+j

�
�t (D:20)

�
(2)
�

def
=
�
�~q � r�+ � cjr�+j

�
�t (D:21)

�
(3)
�

def
=
h
�~q � r(�+ + �+)� cjr(�+ + �+)

i
�t (D:22)

and

~e1
def
=

r�+
jr�+j ; ~e2

def
=

r�+
jr�+j ; and ~e3

def
=

r(�+ + �+)

jr(�+ + �+)j (D:23)

With the aid of Eqs. (D.13){(D.16), (4.14) and (4.15), Eqs. (D.20){(D.22) imply that

�
(1)
� = � �t

2wh
[hu� (w + b)v � c��] = �+(P ) � c�t��

2wh
(D:24)

�
(2)
� = � �t

2wh
[hu+ (w � b)v � c��] = �+(P )� c�t��

2wh
(D:25)

and

�
(3)
� = � �t

2wh
[2hu� 2bv � c�� ] = �+(P ) + �+(P )� c�t��

2wh
(D:26)

where ��, �� and

��
def
= 2

p
b2 + h2 (D:27)
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respectively, are the lengths of the three sides DF , BD, and FB of the triangle 4BDF
depicted in Figs. 12(a){(c). Furthermore, as a result of Eq. (D.23), (i) ~e1 is normal to any
straight line along which �+ is a constant, (ii) ~e2 is normal to any straight line along which
�+ is a constant, and (iii) ~e3 is normal to any straight line along which �++�+ is a constant.
It follows from the above observations and Eq. (D.6) that ~e1, ~e2 and ~e3, respectively, point

in the directions of
�!
O0I,

�!
O0J and

��!
O0K (see Fig. 23).

With the aid of Eqs. (D.20){(D.23), it is easy to conclude from Eqs. (D.17){(D.19) that:

(a) For all ~e 2 Se,

�
(1)
+ � �+(R) � �

(1)
� (D:28)

with the understanding that the upper bound �
(1)
+ and the lower bound �

(1)
� , respec-

tively, are attained when ~e = ~e1 and ~e = �~e1.
(b) For all ~e 2 Se,

�
(2)
+ � �+(R) � �

(2)
� (D:29)

with the understanding that the upper bound �
(2)
+ and the lower bound �

(2)
� , respec-

tively, are attained when ~e = ~e2 and ~e = �~e2.
(c) For all ~e 2 Se,

�
(3)
+ � �+(R) + �+(R) � �

(3)
� (D:30)

with the understanding that the upper bound �
(3)
+ and the lower bound �

(3)
� , respec-

tively, are attained when ~e = ~e3 and ~e = �~e3.

Let
�(`)

def
= maxfj�(`)+ j; j�(`)� jg; ` = 1; 2; 3 (D:31)

Then Eqs. (D.24){(D.26) imply that

�(1) =
�t

2wh
[jhu� (w + b)vj+ c��] (D:32)

�(2) =
�t

2wh
[jhu+ (w � b)vj+ c��] (D:33)

and

�(3) =
�t

2wh
[2jhu � bvj+ c�� ] (D:34)

Let �e, the local Euler CFL number at point O, be de�ned by

�e
def
= maxf�(1); �(2); �(3)g (D:35)

Then the conclusions given in (a){(c) coupled with Eq. (D.8) imply that the circle depicted
in Fig. 23 lies entirely in the interior of the hexagon ABCDEF (i.e., the analytical domain
of dependence of point O lies within its numerical domain of dependence) if and only if

�e < 1 (D:36)
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The mesh with b = 0 is used in [3]. For this special case, we have

�� = �� =
p
w2 + h2; and �� = 2h if b = 0 (D:37)

As a result, Eqs. (D.32){(D.35) imply that

�e = max

(
(c+ juj)�t

w
;

�t

2wh
[h juj+ w jvj+

p
w2 + h2 c]

)
if b = 0 (D:38)

Note that the second component within the parentheses in Eq. (D.38) is a simpli�ed form
of the expression given on the extreme right side of Eq. (D.8) in [9]. As a result, �e given in
Eq. (D.38) is identical to that given in Eq. (D.9) in [9].

D.3. An Existence Theorem

Here we shall prove the following theorem.

Theorem. At any mesh point (j; k; n) 2 
, existence of

h
�
(1)+
`1

i�1
and

h
�
(2)+
`1

i�1
; ` = 1; 2; 3

is assured if the local CFL number
�e < 2=3 (D:39)

Proof: As a preliminary, we shall discuss the eigenvalues of the matrix

M(kx; ky)
def
= kx F

x + ky F
y (D:40)

Here (i) kx and ky are arbitrary real numbers, and (ii) F x and F y are the matrices formed
by fxm;` and fym;` (see Eq. (6.13)), m; ` = 1; 2; 3; 4, respectively. By using (i) Eqs. (1.1),
(1.2), (2.1) and (4.1){(4.3) in [63], and (ii) the fact that two similar matrices have the same
eigenvalues, counting multiplicity [54, p.45], one concludes that the eigenvalues of M(kx; ky)
are �0, �0, �+ and �� with

�0
def
= kx u+ ky v (D:41)

and
��

def
= �0 � c

q
k2x + k2y (D:42)

Note that it is assumed here that the ow variables are evaluated at the mesh point (j; k; n)
(i.e., the point O referred to earlier in this appendix).

Because F �+ and F �+, respectively, are the matrices formed by f �+m;` and f�+m;`, m; ` =
1; 2; 3; 4, Eqs. (6.29), (6.31) and (4.20) imply that

F �+ =
3�t

4w

 
F x � w + b

h
F y

!
(D:43)

F �+ =
3�t

4w

 
F x +

w � b

h
F y

!
(D:44)
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and

F �+ + F �+ =
3�t

2w

 
F x � b

h
F y

!
(D:45)

With the aid of Eqs. (4.14), (4.15), (D.27), (D.40){(D.45), one arrives at the following
conclusions:

(a) The eigenvalues of F �+ are �(1)0 , �(1)0 , �(1)+ and �
(1)
� where

�
(1)
0

def
=

3�t

4w

 
u� w + b

h
v

!
(D:46)

and

�
(1)
�

def
= �

(1)
0 � 3c�t��

4wh
(D:47)

(b) The eigenvalues of F �+ are �
(2)
0 , �

(2)
0 , �

(2)
+ and �

(2)
� where

�
(2)
0

def
=

3�t

4w

 
u+

w � b

h
v

!
(D:48)

and

�
(2)
�

def
= �

(2)
0 � 3c�t��

4wh
(D:49)

(c) The eigenvalues of (F �+ + F �+) are �
(1)
0 + �

(2)
0 , �

(1)
0 + �

(2)
0 , �

(3)
+ and �

(3)
� where

�
(3)
�

def
= �

(1)
0 + �

(2)
0 � 3c�t��

4wh
(D:50)

Let (i) �1, �2, : : :, �n be the eigenvalues of any n � n matrix A, and (ii) I be the n � n
identity matrix. Then the eigenvalues of the matrix I �A are 1� �1, 1��2, : : :, 1��n. As
a result, Eqs. (6.33), (6.36), (6.39), (6.42), (6.45) and (6.48) coupled with the above results
(a){(c) imply that:

(d) The eigenvalues of �(1)+
11 are 1 � �

(1)
0 � �

(2)
0 , 1 � �

(1)
0 � �

(2)
0 , 1 � �

(3)
+ and 1 � �

(3)
� while

the eigenvalues of �
(2)+
11 are 1 + �

(1)
0 + �

(2)
0 , 1 + �

(1)
0 + �

(2)
0 , 1 + �

(3)
+ and 1 + �

(3)
� .

(e) The eigenvalues of �
(1)+
21 are 1+�

(1)
0 , 1+�

(1)
0 , 1+�

(1)
+ and 1+�

(1)
� , while the eigenvalues

of �(2)+
21 are 1� �

(1)
0 , 1� �

(1)
0 , 1 � �

(1)
+ and 1 � �

(1)
� .

(f) The eigenvalues of �(1)+
31 are 1+�

(2)
0 , 1+�

(2)
0 , 1+�

(2)
+ and 1+�

(2)
� , while the eigenvalues

of �
(2)+
31 are 1� �

(2)
0 , 1� �

(2)
0 , 1 � �

(2)
+ and 1 � �

(2)
� .
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Note that the matrices referred to in (d){(f) are nonsingular, and therefore their inverses
exist, if the eigenvalues of these matrices are nonzero [54, p.14]. To complete the proof, we
need only to show that these eigenvalues are nonzero if �e < 2=3.

To proceed, note that, because c > 0, it follows from Eqs. (D.24){(D.26) that

�
(1)
+ > �+(P ) > �

(1)
� ; and �

(2)
+ > �+(P ) > �

(2)
� (D:51)

and
�
(3)
+ > �+(P ) + �+(P ) > �

(3)
� (D:52)

With the aid of Eqs. (D.31), (D.35), (D.51) and (D.52), Eq. (D.39), which is equivalent to
(3=2)�e < 1, implies that

3

2
j�(`)� j < 1; ` = 1; 2; 3 (D:53)

and
3

2
j�+(P )j < 1;

3

2
j�+(P )j < 1; and

3

2
j�+(P ) + �+(P )j < 1 (D:54)

Next note that Eqs. (D.15), (D.16), (D.24){(D.26) and Eqs. (D.46){(D.50) imply that

�
(`)
� = �3

2
�
(`)
� ; ` = 1; 2; 3 (D:55)

and

�
(1)
0 = �3

2
�+(P ); �

(2)
0 = �3

2
�+(P ); and �

(1)
0 + �

(2)
0 = �3

2
(�+(P ) + �+(P )) (D:56)

It now follows from Eqs. (D.53){(D.56) that each one of the eigenvalues listed in (d){(f) has
the form of 1�x with jxj < 1 if �e < 2=3. Thus these eigenvalues are all positive if �e < 2=3.
QED.
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